首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >3D HEAT TRANSFER ASSESSMENT OF FULL-SCALE INLET VANES WITH SURFACE-OPTIMIZED FILM COOLING: PART 2 — CONJUGATE CFD SIMULATIONS
【24h】

3D HEAT TRANSFER ASSESSMENT OF FULL-SCALE INLET VANES WITH SURFACE-OPTIMIZED FILM COOLING: PART 2 — CONJUGATE CFD SIMULATIONS

机译:具有表面优化膜冷却的大型进风叶片的3D传热评估:第2部分-联合CFD仿真

获取原文

摘要

An investigation of the experimental heat transfer and cooling effectiveness for a modern fully-cooled high-pressure turbine (HPT) inlet vane is presented. Conjugate Heat Transfer (CHT) Computational Fluid Dynamics (CFD) is conducted to simulate experiments using thin-film heat-flux gauges on full-scale 3D vanes at engine-representative conditions from Part 1 of this paper. Pressure side (PS) film cooling performance is compared for a baseline and optimized configuration, in which the latter was previously developed using genetic algorithm (GA) optimization. The optimized vane was iterated using hundreds of computationally efficient 3D Reynolds Averaged Navier Stokes (RANS) CFD simulations with a transpiration boundary condition to simulate film cooling. This combination of CFD and GAs determined surface-optimized cooling hole orientations and placement. Steady-state flat plate infrared thermography experiments that followed also determined the best cooling hole shapes to use on different sections of the vane pressure side surface. This ultimately generated the cooling design to be fabricated using realistic materials and experimentally tested in Part 1 and simulated using CHT CFD in the current work (Part 2). Here, spanwise and streamwise heat transfer distributions for the baseline and optimized cooling design are validated against experimental data. 3D CHT CFD results are then assessed at the same conditions, providing relevance and credence to the overall cooling design methods. Ultimately, surface-optimized film cooling designs can be used to reduce the adverse effects of sub-optimal heat distribution on critical high temperature engine parts, increasing the life of the part. Alternatively, such a design could lead to increases in engine efficiency since less cooling air is required from the mainstream per part.
机译:提出了一种现代完全冷却的高压涡轮机(HPT)入口叶片实验传热和冷却效能的研究。共轭传热(CHT)计算流体动力学(CFD)被进行以模拟在本文第1部分的发动机代表条件下使用薄膜热通量计模拟使用薄膜热通量计的实验。将压力侧(PS)膜冷却性能进行比较,以基线和优化的配置,其中后者使用遗传算法(GA)优化开发。使用数百个计算效率的3D雷诺斯平均Navier Stokes(RAN)CFD模拟迭代优化的叶片,其具有蒸腾边界条件以模拟薄膜冷却。这种CFD和气体的组合确定了表面优化的冷却孔取向和放置。稳态平板红外热法摄影实验,遵循最佳的冷却孔形状以在叶片压力侧表面的不同部分上使用。这最终产生了使用现实材料制造的冷却设计,并在第1部分实验测试并在当前工作中使用CHT CFD进行模拟(第2部分)。这里,用于基线和优化的冷却设计的翼展和流动传热分布针对实验数据验证。然后在相同的条件下评估3D CHT CFD结果,提供对整体冷却设计方法的相关性和信用。最终,表面优化的薄膜冷却设计可用于降低临时热分布对关键高温发动机部件的不利影响,增加了部件的寿命。或者,这种设计可能导致发动机效率的增加,因为从每个部分主流需要较少的冷却空气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号