首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >COMBUSTION ANALYSIS OF SYNGAS FUELS APPLIED IN A MICRO GAS TURBINE COMBUSTOR WITH A ROTATING CASING
【24h】

COMBUSTION ANALYSIS OF SYNGAS FUELS APPLIED IN A MICRO GAS TURBINE COMBUSTOR WITH A ROTATING CASING

机译:带旋转壳体的微型燃气轮机燃烧器中SYNGAS燃料的燃烧分析

获取原文
获取外文期刊封面目录资料

摘要

Combustion characteristics of a can combustor with a rotating casing for an innovative micro gas turbine have been modeled. The effects of syngas compositions and the rotating speed on the combustor performance were investigated. The effects of rotation on the combustion performance have been studied previously with methane as the fuel. This work extended the investigation for future application with syngas blended fuels. Two typical compositions of syngas were used namely: H2-rich (H_2:CO=80:20, by volume) and equal molar (H_2.CO=50:50). The analyses were performed with a computational model, which consists of three-dimension compressible k-e realizable turbulent flow model and presumed probability density function for combustion process invoking a laminar flamelet assumption generated by detailed chemical kinetics from GRI 3.0. As syngas is substituted for methane at a constant fuel flow rate, the high temperature flame is stabilized along the wall of the combustor liner. With the casing rotating, pattern factor and exit temperature increase, but the lower heating value of syngas causes a power shortage. To make up the power, the fuel flow rate is raised to maintain the thermal load. Consequently, the high temperature flame is pushed downstream due to increased fuel injection velocity. NO_x emission decreases as the rotational speed increases in both cases. Pattern factor decreases but exit temperature increases with the increase of roatation speed indicating a higher combustion efficiency. However, there is possible hotspots at exit due to higher pattern factor (PF>0.3) for H_2-rich and equal molar syngas at lower speed of rotation, which needs to be resolved by improving the cooling strategy.
机译:已经对具有创新的微型燃气轮机的带有旋转壳体的罐式燃烧器的燃烧特性进行了建模。研究了合成气组成和转速对燃烧器性能的影响。先前已经以甲烷为燃料研究了旋转对燃烧性能的影响。这项工作将研究范围扩展到合成气混合燃料的未来应用。使用两种典型的合成气组成,即:富H 2(H 2:CO = 80:20,按体积计)和等摩尔(H_2.CO = 50:50)。分析使用计算模型进行,该模型由三维可压缩的k-e可实现的湍流模型和用于燃烧过程的假定概率密度函数组成,该函数调用了由GRI 3.0的详细化学动力学生成的层流小火焰假设。由于合成气以恒定的燃料流量代替了甲烷,因此高温火焰沿燃烧室衬套的壁稳定了。随着套管的旋转,图案系数和出口温度增加,但是合成气的较低的热值导致电力短缺。为了弥补动力,提高燃料流量以维持热负荷。因此,由于增加的燃料喷射速度,高温火焰被推向下游。在两种情况下,NO_x排放均随着转速的增加而降低。模式因子减小,但出口温度随旋转速度的增加而增加,表明较高的燃烧效率。但是,由于富含H_2且等摩尔的合成气在较低的旋转速度下具有较高的模式因子(PF> 0.3),因此在出口处可能存在热点,这需要通过改进冷却策略来解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号