首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >DEVELOPMENT AND ANALYSIS OF AN INTEGRATED MILD/PARTIAL GASIFICATION COMBINED (IMPGC) CYCLE: PART 1 — DEVELOPMENT OF A BASELINE IMPGC SYSTEM
【24h】

DEVELOPMENT AND ANALYSIS OF AN INTEGRATED MILD/PARTIAL GASIFICATION COMBINED (IMPGC) CYCLE: PART 1 — DEVELOPMENT OF A BASELINE IMPGC SYSTEM

机译:轻度/部分气化综合(IMPGC)循环的开发和分析:第1部分—基线IMPGC系统的开发

获取原文

摘要

Around 50% of the world's electrical power supply comes from the Rankine cycle, and the majority of existing Rankine cycle plants are driven by coal. Given how politically unattractive coal is as an energy resource in spite of its high energy content, it becomes necessary to find a way to utilize coal in a cleaner and more efficient manner. Designed as a potential retrofit option for existing Rankine cycle plants, the Integrated Mild/Partial Gasification Combined (IMPGC) Cycle is an attractive concept in cycle design that can greatly increase the efficiency of coal-based power plants, particularly for retrofitting an old Rankine cycle plant. Compared to the Integrated Gasification Combined Cycle (IGCC), IMPGC uses mild gasification to purposefully leave most of the volatile matters within the feedstock intact (hence, yielding more chemical energy) compared to full gasification and uses partial gasification to leave some of the remaining char un-gasified compared to complete gasification. The larger hydrocarbons left over from the mild gasification process grant the resulting syngas a higher volumetric heating value, leading to a more efficient overall cycle performance. This is made possible due to the invention of a warm gas cleanup process invented by Research Triangle Institute (RTI), called the High Temperature Desulfurization Process (HTDP), which was recently commercialized. The leftover char can then be burned in a conventional boiler to boost the steam output of the bottom cycle, further increasing the efficiency of the plant, capable of achieving a thermal efficiency of 47.9% (LHV). The first part of this paper will analyze the individual concepts used to create the baseline IMPGC model, including the mild and partial gasification processes themselves, the warm gas cleanup system, and the integration of the boiler with the heat recovery steam generator (HRSG). Part 2 will then compare this baseline case with four other common types of power plants, including subcritical and ultra-supercritical Rankine cycles, IGCC, and natural gas.
机译:世界上约50%的电力供应来自兰金循环,现有兰金循环中的大多数工厂都是由煤炭驱动的。鉴于尽管煤炭的能源含量高,但在政治上却缺乏吸引力,因此有必要寻找一种以更清洁,更高效的方式利用煤炭的方法。轻度/部分气化联合循环(IMPGC)循环设计作为现有兰金循环电厂的潜在改装方案,是循环设计中一个引人入胜的概念,可以大大提高燃煤电厂的效率,特别是对旧的兰金循环进行改造植物。与整体气化相比,整体气化联合循环(IGCC)与常规气化相比,IMPGC使用温和气化将原料中的大部分挥发性物质完整地保留下来(因此,产生更多的化学能),并且使用部分气化来保留一些剩余的焦炭。与完全气化相比,未气化。温和气化过程中残留的较大碳氢化合物使合成气具有更高的体积热值,从而导致更有效的整体循环性能。这是由于三角研究所(RTI)发明了一种称为“高温脱硫工艺(HTDP)”的热气净化工艺的发明,该工艺最近已商业化。然后可以将剩余的焦炭在常规锅炉中燃烧,以提高底部循环的蒸汽输出,从而进一步提高设备的效率,能够实现47.9%(LHV)的热效率。本文的第一部分将分析用于创建基线IMPGC模型的各个概念,包括温和和部分气化过程本身,热气净化系统以及锅炉与热回收蒸汽发生器(HRSG)的集成。然后,第2部分将将此基准案例与其他四种常见类型的发电厂进行比较,包括亚临界和超超临界朗肯循环,IGCC和天然气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号