首页> 外文会议>Device Research Conference >Towards Vacuum-Less Operation of Nanoscale Vacuum Channel Transistors
【24h】

Towards Vacuum-Less Operation of Nanoscale Vacuum Channel Transistors

机译:致力于实现纳米级真空通道晶体管的无真空操作

获取原文

摘要

Nanoscale Vacuum Channel Transistors (NVCTs) could potentially have superior performance compared to solid state devices of equivalent channel length owing to ballistic transport of electrons, shorter transit time and higher intrinsic breakdown voltage [1, 2]. The electron transport channel in NVCTs is free space and hence there is no scattering. Furthermore, there is no opportunity for ionization or avalanche carrier multiplication and NVCTs can have very high breakdown voltage [1]. Hence NVCTs have promise for Johnson figure of merit that could be as high as 1014 V/s. However, they need ultra-high vacuum (UHV) for reliable operation as the field emission process is sensitive to barrier height variations induced by adsorption/desorption of gas molecules. Small changes in the barrier height lead to exponential variations in current [3]. Poor vacuum also leads to generation of energetic ions that bombard the emitter tips, rendering the tips blunt and degrading electrical performance. To overcome the UHV requirement, we propose using graphene to nano-encapsulate only the field emitter either in UHV or in a gas (e.g. helium) with high ionization energy. By separating the field emission region from the acceleration region (where the electrons acquire energy), electrons can be transported in a non-ideal vacuum, if not atmospheric conditions. For mechanical strength, multiple graphene layers that are transparent to electrons while impervious to gas molecules/ions must be used [4-6]. In this work we demonstrate the electron transparency of multiple graphene layers.
机译:与等效通道长度的固态器件相比,由于电子的弹道传输,更短的传输时间和更高的固有击穿电压,纳米级真空通道晶体管(NVCT)可能具有优于等效通道长度的固态器件的性能[1,2]。 NVCT中的电子传输通道是自由空间,因此没有散射。此外,没有机会进行电离或雪崩载流子倍增,并且NVCT可能具有很高的击穿电压[1]。因此,NVCT为Johnson的品质因数带来了希望,该品质因数可能高达1014 V / s。但是,它们需要超高真空(UHV)才能可靠运行,因为场发射过程对气体分子的吸附/解吸引起的势垒高度变化敏感。势垒高度的微小变化会导致电流呈指数变化[3]。真空度差还会导致产生高能离子,从而轰击发射器尖端,使尖端变钝并降低电性能。为了克服UHV的要求,我们建议使用石墨烯在UHV或具有高电离能的气体(例如氦气)中仅纳米封装场发射器。通过将场发射区域与加速区域(电子获取能量的区域)分开,电子可以在非理想真空中传输,即使不是在大气条件下也是如此。为了获得机械强度,必须使用多个对电子透明但不渗透气体分子/离子的石墨烯层[4-6]。在这项工作中,我们演示了多个石墨烯层的电子透明性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号