首页> 外文会议>Design, Automation and Test in Europe Conference and Exhibition >PLEDGER: Embedded Whole Genome Read Mapping using Algorithm-HW Co-design and Memory-aware Implementation
【24h】

PLEDGER: Embedded Whole Genome Read Mapping using Algorithm-HW Co-design and Memory-aware Implementation

机译:PLEDGER:嵌入式全基因组读取映射使用算法 - HW Co-Design和Memory Ippure实现

获取原文

摘要

With over 6000 known genetic disorders, genomics is a key driver to transform the current generation of healthcare from reactive to personalized, predictive, preventive and participatory (P4) form. High throughput sequencing technologies produce large volumes of genomic data, making genome reassembly and analysis computationally expensive in terms of performance and energy. In this paper, we propose an algorithm-hardware co-design driven acceleration approach for enabling translational genomics. Core to our approach is a Pyopencl based tooL for gEnomic workloaDs tarGeting Embedded platforms (PLEDGER). PLEDGER is a scalable, portable and energy-efficient solution to genomics targeting low-cost embedded platforms. It is a read mapping tool to reassemble genome, which is a crucial prerequisite to genomics. Using bit-vectors and variable level optimisations, we propose a low-memory footprint, dynamic programming based filtration and verification kernel capable of accelerated parallel heterogeneous executions. We demonstrate, for the first time, mapping of real reads to whole human genome on a memory-restricted embedded platform using novel memory-aware preprocessed data structures. We compare the performance and accuracy of PLEDGER with state-of-the-art RazerS3, Hobbes3, CORAL and REPUTE on two systems: 1) Intel i7-8750H CPU + Nvidia GTX 1050 Ti, 2) Odroid N2 with 6 cores: 4xCortex-A73 + 2xCortex-A53 and Mali GPU. PLEDGER demonstrates persistent energy and accuracy advantages compared to state-of-the-art read mappers producing up to 11× speedups and 5.9× energy savings compared to state-of-the-art hardware resources.
机译:含有超过6000名已知的遗传疾病,基因组学是一个关键驾驶员,用于将当前生成的医疗保健从反应转变为个性化,预测,预防和参与性(P4)形式。高吞吐量测序技术产生大量的基因组数据,使基因组重新组装和分析在性能和能量方面计算得昂贵。在本文中,我们提出了一种算法 - 硬件共同设计驱动加速方法,用于实现平移基因组学。我们方法的核心是一种基于Pyopencl的基因组工作负载工具,其针对嵌入式平台(灌注器)。预制器是针对低成本嵌入式平台的基因组学的可扩展性,便携式和节能的解决方案。它是重组基因组的读取映射工具,这是基因组学的一个至关重要的先决条件。使用位向量和可变级别优化,我们提出了一种低存储器占用,动态编程的基于动态编程和能够加速并行异构执行的验证内核。我们首次演示了使用小说记忆感知预处理数据结构对内存受限嵌入式平台的整个人类基因组的真实读取的映射。我们将预定者与最先进的Razers3,Hobbes3,珊瑚和辩护的性能和准确性进行比较,两个系统:1)英特尔I7-8750H CPU + NVIDIA GTX 1050 TI,2)ODROID N2与6个核心:4xcortex- A73 + 2xCortex-A53和Mali GPU。与最先进的硬件资源相比,预示着与最先进的读取映射器相比,持续的能量和准确性优势,而最高可达11倍的映射器和5.9×节能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号