首页> 外文会议>IEEE International Solid- State Circuits Conference >13.2 A 3.6Mb 10.1Mb/mm2 Embedded Non-Volatile ReRAM Macro in 22nm FinFET Technology with Adaptive Forming/Set/Reset Schemes Yielding Down to 0.5V with Sensing Time of 5ns at 0.7V
【24h】

13.2 A 3.6Mb 10.1Mb/mm2 Embedded Non-Volatile ReRAM Macro in 22nm FinFET Technology with Adaptive Forming/Set/Reset Schemes Yielding Down to 0.5V with Sensing Time of 5ns at 0.7V

机译:13.2采用22nm FinFET技术的3.6Mb 10.1Mb / mm 2 嵌入式非易失性ReRAM宏,具有自适应形成/设置/复位方案,可产生低至0.5V的电压,在0.7V的检测时间为5ns

获取原文

摘要

A resistive RAM (ReRAM) macro is developed as a low-cost, magnetic-disturb-immune option for embedded, non-volatile memory for SoCs used in IoT and automotive applications. We demonstrate the smallest ReRAM subarray density of 10.1Mb/mm2 in a 22nm low-power process. The subarray uses nominal-gate FINFET logic devices, with material innovations to allow low-voltage switching without impacting transistor reliability. Prior art features larger bit cell size or array density, and uses 28 or 40nm technology nodes [1]-[4]. The smallest read-sense time (tSENSE=5ns@0.7V) is demonstrated, compared to previous works [2]. An optimized pulse-width (PW) voltage-current write-verify-write (PVC-WVW) sequence helps in mitigating endurance and variability. A flexible and low-area TFR (thin-film resistor) based reference scheme enables optimization of forming, write yield, retention and endurance tradeoffs by skewing different verify and read resistances. A temperature-constant current source and a reference resistance help in the precise control of the forming/set current and the verify/read operations. Compared to area-inefficient bandgap circuits and temperature sensors, the in-situ TFR was used due to its low area, flexibility and seamless integration into the SoC. The memory bank uses a single supply coming from an in-situ charge pump (CP) that is shared across the macro.
机译:电阻性RAM(ReRAM)宏是作为一种低成本的抗磁干扰技术而开发的,用于嵌入式,非易失性存储器,用于物联网和汽车应用中的SoC。我们证明最小的ReRAM子阵列密度为10.1Mb / mm 2 在22nm低功耗工艺中。该子阵列使用标称栅极FINFET逻辑器件,并进行了材料创新,可在不影响晶体管可靠性的情况下进行低压开关。现有技术的特征在于更大的位单元尺寸或阵列密度,并且使用28或40nm技术节点[1]-[4]。最小读取时间(t SENSE 与以前的工作相比,[5] = 5ns@0.7V)得到了证明[2]。优化的脉冲宽度(PW)电压-电流写入-验证-写入(PVC-WVW)序列有助于减轻耐久性和可变性。基于灵活的低面积TFR(薄膜电阻器)的参考方案可通过倾斜不同的验证和读取电阻来优化形成,写入良率,保持力和耐久性的折衷。温度恒定的电流源和参考电阻有助于精确控制成形/设置电流和验证/读取操作。与面积效率低的带隙电路和温度传感器相比,使用原位TFR的原因是它的面积小,灵活性强并且可以无缝集成到SoC中。存储器组使用来自现场电荷泵(CP)的单个电源,该电源在整个宏中共享。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号