首页> 外文会议>ASME power conference >MULTI-COMPONENT SEPARATION AND PURIFICATION OF NATURAL GAS
【24h】

MULTI-COMPONENT SEPARATION AND PURIFICATION OF NATURAL GAS

机译:天然气的多组分分离与纯化

获取原文

摘要

Over the past decade, several technical developments (such as hydraulic fracturing) have led to an exponential increase in discovering new domestic natural gas reserves. Raw natural gas composition can vary substantially from source to source. Typically, methane accounts for 75% to 95% of the total gas, with the rest of the gas containing ethane, propane, butane, other higher hydrocarbons, and impurities, with the most common including H_2O, CO_2, N_2, and H_2S. All natural gas requires some treatment, if only to remove H_2O; however, the composition of natural gas delivered to the commercial pipeline grids is tightly controlled. Sub-quality natural gas reserves, which are defined as fields containing more than 2% CO_2, 4% N_2, or 4 ppm H_2S, make up nearly half of the world's natural gas volume. The development of sub-quality, remote, and unconventional fields (i.e. landfill gas) can present new challenges to gas separation and purification methods. Adsorbent technologies, such as the use of activated carbons, zeolites, or metal-organic frameworks (MOFs), may hold the key to more efficient and economically viable separation methods. This work proposes to prove the applicability of the multi-component potential theory of adsorption (MPTA) to a real world natural gas adsorbent system to properly characterize the adsorbent's selectivity for an individual gas component using only the single component isotherms. Thus, the real-world gas separation/purification application of a specific adsorbent for a given gas stream can be obtained simply and effectively without the need for large experimental efforts or costly system modifications until after an initial computational screening of perspective materials has been completed. While the current research effort will use natural gas, which is the world's largest industrial gas separations application, to validate the MPTA, the tools gained through this effort can be applied to other gas separation effort.
机译:在过去的十年中,几项技术发展(例如水力压裂)已导致发现新的国内天然气储量成倍增加。原始天然气的组成因来源而异。通常,甲烷占总气体的75%至95%,其余气体包含乙烷,丙烷,丁烷,其他高级烃和杂质,最常见的气体包括H_2O,CO_2,N_2和H_2S。如果仅去除H_2O,则所有天然气都需要进行一些处理。但是,严格控制输送到商业管道网的天然气的成分。劣质天然气储量被定义为包含超过2%的CO_2、4%的N_2或4 ppm的H_2S的气田,占世界天然气总量的近一半。劣质,偏远和非常规领域(即垃圾填埋气)的发展可能对气体分离和净化方法提出新的挑战。吸附剂技术,例如使用活性炭,沸石或金属有机骨架(MOF),可能是更有效和经济可行的分离方法的关键。这项工作旨在证明多组分潜在吸附理论(MPTA)在现实世界中的天然气吸附剂系统中的适用性,从而仅使用单组分等温线就可以正确地表征吸附剂对单个气体组分的选择性。因此,在完成对透视材料的初步计算筛选之前,可以简单有效地获得针对给定气流的特定吸附剂在现实世界中的气体分离/纯化应用,而无需进行大量的实验工作或昂贵的系统修改。尽管当前的研究工作将使用世界上最大的工业气体分离应用程序天然气来验证MPTA,但通过此工作获得的工具也可以应用于其他气体分离工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号