首页> 外文会议>ASME international mechanical engineering congress and exposition >UNCERTAINTY QUANTIFICATION OF ARTIFICIAL NEURAL NETWORK BASED MACHINE LEARNING POTENTIALS
【24h】

UNCERTAINTY QUANTIFICATION OF ARTIFICIAL NEURAL NETWORK BASED MACHINE LEARNING POTENTIALS

机译:基于人工神经网络的机器学习潜力的不确定性量化

获取原文

摘要

Atomistic simulations play an important role in the material analysis and design by being rooted in the accurate first principles methods that free from empirical parameters and phenomenological models. However, successful applications of MD simulations largely depend on the availability of efficient and accurate force field potentials used for describing the interatomic interactions. As a powerful tool revolutionizing many areas in science and technology, machine learning techniques have gained growing attentions in the field of material science and engineering due to their potentials to accelerate the material discovery through their applications in surrogate model assisted material design. Despite tremendous advantages of employing machine learning techniques for the development of force field potentials as compared to conventional approaches, the uncertainty involved in the machine learning interpolated atomic potential energy surface has not drew much attention although it is an important issue. In this paper, the uncertainty quantification study is performed for the machine learning interpolated atomic potentials, and applied to the titanium dioxide (TiO2), an industrially relevant and well-studies material. The study results indicated that quantifying uncertainties is an indispensable task that must be performed along with the atomistic simulation process for a successful application of the machine learning based force field potentials.
机译:原子模拟植根于无经验参数和现象学模型的准确的第一原理方法中,因此在材料分析和设计中起着重要作用。但是,MD模拟的成功应用很大程度上取决于用于描述原子间相互作用的有效且准确的力场电势。作为在科学和技术领域发生重大变革的强大工具,机器学习技术因其通过在替代模型辅助材料设计中的应用来加速材料发现的潜力而在材料科学和工程领域引起了越来越多的关注。尽管与传统方法相比,采用机器学习技术来开发力场势具有巨大优势,但是机器学习内插原子势能面所涉及的不确定性虽然很重要,但却并未引起人们的广泛关注。在本文中,对机器学习的内插原子势进行了不确定性量化研究,并将其应用于工业相关且研究充分的材料二氧化钛(TiO2)。研究结果表明,量化不确定性是必不可少的任务,必须将其与原子模拟过程一起执行,以成功应用基于机器学习的力场电势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号