首页> 外文会议>ASME international mechanical engineering congress and exposition >OPTIMIZATION OF HEAT TRANSFER PROCESS IN A WALKING BEAM REHEAT FURNACE USING COMPUTATIONAL FLUID DYNAMICS
【24h】

OPTIMIZATION OF HEAT TRANSFER PROCESS IN A WALKING BEAM REHEAT FURNACE USING COMPUTATIONAL FLUID DYNAMICS

机译:利用计算流体力学优化行走束再热炉的传热过程

获取原文

摘要

In the steelmaking process, reheating furnaces are used to reheat steel slabs to a target rolling temperature. The bottom intermediate zone inside the reheating furnace plays a decisive role in controlling the slab temperature distribution before slabs enter the soaking zone. Efforts to maintain a uniform slab surface temperature and thus enhance product quality require a good understanding of the furnace's operation. However, traditional physical experiments are costly and have high risks as well. In this study, a three-dimensional steady-state computational fluid dynamics (CFD) model was developed to investigate the flow field in the bottom intermediate zone of a full-scale reheating furnace. The commercial software ANSYS Fluent® was used to solve the transport equations to predict the flame length, heat transfer, and gas temperature near the slab. Total input mass flow rate, preheated air temperature, and air/fuel ratio were selected to investigate the comprehensive influence of the furnace's performance, which can be evaluated from the flame length, flame angle, and average gas temperature near the slab. Importantly, an orthogonal experimental design was conducted to optimize the evaluation factors by considering the multi influencing factors simultaneously. The simulation results indicate that a higher mass flow rate produces a lower upwards flame angle, which can prevent the hot spot detected on the slab surface. A higher preheated air temperature leads to a higher average gas temperature in this furnace; meanwhile, the flame becomes shorter by enhancing the air-fuel ratio.
机译:在炼钢过程中,使用加热炉将钢坯加热到目标轧制温度。在板坯进入均热区之前,加热炉内的底部中间区域在控制板坯温度分布方面起着决定性的作用。努力保持板坯表面温度均匀,从而提高产品质量,需要对熔炉的运行有充分的了解。但是,传统的物理实验不仅成本高昂,而且具有很高的风险。在这项研究中,建立了三维稳态计算流体动力学(CFD)模型,以研究全尺寸加热炉底部中间区域的流场。商业软件ANSYSFluent®用于求解运输方程,以预测板坯附近的火焰长度,传热和气体温度。选择总的输入质量流量,预热的空气温度和空燃比来研究炉子性能的综合影响,可以从炉膛的火焰长度,火焰角度和炉膛附近的平均气体温度对其进行评估。重要的是,通过同时考虑多种影响因素,进行了正交试验设计以优化评估因素。仿真结果表明,较高的质量流量会产生较小的向上火焰角,从而可以防止在平板表面检测到热点。较高的预热空气温度导致该炉中的平均气体温度较高;同时,通过提高空燃比,火焰变得更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号