首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >STEAM TURBINE EXHAUST OPTIMIZATION BASED ON GAUSSIAN COVARIANCE NETWORKS USING TRANSIENT CFD SIMULATIONS
【24h】

STEAM TURBINE EXHAUST OPTIMIZATION BASED ON GAUSSIAN COVARIANCE NETWORKS USING TRANSIENT CFD SIMULATIONS

机译:基于瞬态CFD的高斯协方差网络的汽轮机排气优化。

获取原文
获取外文期刊封面目录资料

摘要

Renewable energies are increasingly contributing to the overall volume of the electricity grid and demand besides high efficiency, greater flexibility of the conventional fossil power plants. To optimize these objectives, extensive CFD calculations are required in most cases. For example, transient CFD calculations are only rarely combined with an optimizer because of their high demand on computational resources and time. Surrogate models, which are mathematical methods to learn and approximate the relationship between input and output parameters, are a common way to solve these problems. Once they are trained, they can perform the evaluations within seconds and replace the expensive simulation. Of course, real calculations are still needed to generate the training data. Therefore, it is useful to apply efficient and sequentially extensible design plans. This paper presents a new surrogate model method, based on a deep neural network learning the non-stationary hyperpa-rameters of combined Gaussian process covariance matrices. It is used to approximate the complex and time consuming transient CFD simulation of a combined high-intermediate pressure steam turbine double shell outer casing. To minimize the exergy loss, the exhaust geometry is optimized in a single and multi-objective optimization on the surrogate models. The multi-objective optimization also includes the uniform velocity distribution of the steam in different areas of the casing, to predict the thermal loading of the steam turbine inner casing and to avoid an imbalanced thermal loading. A sequential sampling approach combined with a sensitivity analysis is used to find the minimum number of samples needed to train the surrogate models in order to gain sufficient prediction quality. Additionally, the paper describes the initial geometry, its numerical setup and the required control mechanisms to avoid noisy designs, which might complicate the surrogate model training. There is also a comparison of the initial and chosen optimal designs.
机译:除了传统化石发电厂的高效率和更大的灵活性外,可再生能源也越来越多地为电网和需求做出贡献。为了优化这些目标,大多数情况下需要进行大量的CFD计算。例如,由于瞬态CFD计算对计算资源和时间的需求很高,因此很少与优化器结合使用。替代模型是解决这些问题的常用方法,它是学习和近似输入和输出参数之间关系的数学方法。一旦他们经过培训,他们就可以在几秒钟内完成评估并替换昂贵的模拟。当然,仍然需要进行实际计算才能生成训练数据。因此,应用有效且可顺序扩展的设计计划很有用。本文提出了一种新的替代模型方法,该方法基于深度神经网络,学习组合的高斯过程协方差矩阵的非平稳超参数。它可用于估算组合的高中压蒸汽轮机双壳外套管的复杂且耗时的瞬态CFD模拟。为了最大程度地减少火用损失,在替代模型上通过单目标和多目标优化来优化排气几何形状。多目标优化还包括在壳体的不同区域中蒸汽的均匀速度分布,以预测蒸汽轮机内壳的热负荷并避免不平衡的热负荷。顺序采样方法与敏感性分析相结合,用于找到训练替代模型所需的最少样本数,以便获得足够的预测质量。此外,本文还介绍了初始几何形状,其数值设置以及避免嘈杂设计所需的控制机制,这可能会使替代模型的训练变得复杂。还对初始和选择的最佳设计进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号