首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >AERODYNAMIC OPTIMIZATION OF A TWO-PART VARIABLE INLET GUIDE VANE IN A HIGHLY LOADED LOW PRESSURE COMPRESSOR
【24h】

AERODYNAMIC OPTIMIZATION OF A TWO-PART VARIABLE INLET GUIDE VANE IN A HIGHLY LOADED LOW PRESSURE COMPRESSOR

机译:高负荷低压压缩机中两段式可变进口导流叶片的气动优化

获取原文

摘要

Continuous reduction of fuel consumption for a wide range of operating conditions leads to a high efficiency demand for all engine parts of modern jet engines and especially the compressor. To meet these requirements a two-part Variable Inlet Guide Vane (VIGV), composed of a fixed strut and a variable flap, can be used. Besides the aerodynamic aspects, the VIGV strut is a substantial part for the structural integrity of the compressor. The aerodynamic design optimization of such a VIGV, located upstream of the first rotor of a 2.5 stage low pressure compressor, under the conditions of three different operating points is presented in this paper. In a previous study the shape of the axial gap between strut and flap was optimized without changing the envelope of both parts [1]. The new design tool SplitBlade, developed at the DLR, enables the creation of an axial gap and has been integrated in the design process of the in-house optimization tool AutoOpti. The target of the optimization was to decrease the total pressure loss coefficients for all three operating points. The design optimization presented in this paper is more complex by allowing the VIGV blade geometry to change. The basic dimensions of the VIGV such as the axial chord and the maximum profile thickness are still frozen. In total, 88 parameters are free to change in the optimization process. Additionally to the main target of loss reduction, the circumferential outflow angles are restricted to maintain the deflection of the blade and therewith the required rotor inflow conditions to ensure the operability of the entire compressor in the whole working range. The final result is a two-part VIGV with an axial gap, which is optimized in terms of total pressure losses in three operating points. Compared to a reference geometry without an axial gap, the losses are almost equal at nominal speed, and about one to two percentage points higher in the two part speed operating points.
机译:在广泛的工作条件下持续减少燃油消耗导致对现代喷气发动机的所有发动机部件,尤其是压缩机的高效率需求。为了满足这些要求,可以使用由固定支杆和可变襟翼组成的两部分式可变进气口导向叶片(VIGV)。除了空气动力学方面,VIGV撑杆是压缩机结构完整性的重要组成部分。本文介绍了在三个不同工作点条件下,位于2.5级低压压缩机第一转子上游的VIGV的空气动力学优化设计。在先前的研究中,对支柱和襟翼之间的轴向间隙的形状进行了优化,而没有改变两个零件的包络线[1]。由DLR开发的新设计工具SplitBlade可以创建轴向间隙,并且已集成到内部优化工具AutoOpti的设计过程中。优化的目标是降低所有三个工作点的总压力损失系数。通过改变VIGV叶片的几何形状,本文提出的设计优化更加复杂。 VIGV的基本尺寸(例如轴向弦和最大轮廓厚度)仍被冻结。在优化过程中,总共可以自由更改88个参数。除了减少损失的主要目标外,还限制了圆周流出角以保持叶片的挠度,并由此保持了所需的转子流入条件,以确保整个压缩机在整个工作范围内的可操作性。最终结果是两部分的VIGV带有轴向间隙,在三个工作点的总压力损失方面进行了优化。与没有轴向间隙的参考几何形状相比,在额定转速下的损耗几乎相等,在两个部分转速工作点上的损耗大约高出一到两个百分点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号