首页> 外文会议>Structural Stability Research Council annual stability conference >Modeling Out-of-Flatness and Residual Stresses in Steel Plate Girders
【24h】

Modeling Out-of-Flatness and Residual Stresses in Steel Plate Girders

机译:模拟钢板梁的非平整度和残余应力

获取原文

摘要

As the girder buckling strength depends on residual stresses and initial out-of-flatness, these need to be modeled when quantifying their effects. Zhang in 2007 used single plate imperfection patterns for web out-of-flatness for I-shaped plate girders. Actual girder out-of-flatness patterns include imperfections in all plate elements. This study uses a whole body out-of-flatness pattern compatible with the total body first buckling mode shape (Sadovsky 1978). An imperfection free girder Finite Element Model (FEM) is analyzed in ANSYS Software for Elastic Buckling, using the same loading and boundary conditions as the desired final imperfect steel plate girder, to generate the first buckling mode shape. The nodes of the imperfection free steel plate girder are displaced into the buckled shape and this distorted geometry is then used for non-linear analysis. Yield stress at the welded intersection of flange and web is the basis for residual stress distributions, generated using Heat Analysis in ANSYS to obtain temperature distributions. Lateral bracing is used to prevent global lateral torsional buckling so local buckling controls the flexural moment at onset of yielding. This approach allows a study of the effect of different magnitudes of geometrical imperfection for a set of girder cross-sections for I-shaped plate girders. The flexural moment at onset of yielding for various scales of the buckled shape are normalized by the imperfection free steel plate girder moment, giving a measure of the effect of the size of out-of-flatness on the performance of the girder. The results of FEA show dependency of first yield moment to web slenderness ratios and out-of-flatness in I-shaped plate girders. There is the critical web slenderness ratio of 124 for unstiffened I-shaped girders which causes the most strength reduction for positive moments and drastic strength reduction for larger slenderness for negative moment. No reverse behavior or critical web slenderness was observed in stiffened I-shaped girders for 1D, 2D, and 3D transverse stiffener spacings. The out-of-flatness tolerance was relaxed when it was strength wise possible. The proposed strength-based web out-of-flatness criteria are provided for I-shaped plate girders. Adopting total body first buckling mode shape as out-of-flatness pattern resulted in more conservative web tolerance than Zhang's proposed web tolerance for unstiffened I-shaped girders at positive moments.
机译:由于梁的屈曲强度取决于残余应力和初始不平度,因此在量化其影响时需要对它们进行建模。 Zhang在2007年使用单板缺陷模式来处理I形板梁的腹板不平整度。实际的大梁不平度模式包括所有板件中的缺陷。这项研究使用了与整个身体的第一个屈曲模式形状兼容的全身不平坦度模式(Sadovsky 1978)。在ANSYS软件中针对弹性屈曲使用无缺陷大梁有限元模型(FEM)进行分析,并使用与所需的最终不完美钢板大梁相同的载荷和边界条件,以生成第一个屈曲模式形状。无缺陷的钢板梁的节点被移动到弯曲的形状,然后将这种扭曲的几何形状用于非线性分析。法兰和腹板的焊接交点处的屈服应力是残余应力分布的基础,残余应力分布是使用ANSYS中的热量分析生成以获得温度分布的。横向支撑用于防止整体横向扭转屈曲,因此局部屈曲可控制屈服开始时的弯矩。这种方法可以研究I形板梁的一组梁截面的不同几何缺陷大小的影响。通过无缺陷的钢板梁力矩将屈曲各种尺度的屈服开始时的挠曲矩归一化,从而给出了不平整尺寸对梁性能的影响的量度。 FEA的结果表明,I形板梁的首次屈服力矩与腹板细长比和不平坦度有关。对于未加劲的I形梁,腹板的临界纤细比为124,这会导致正弯矩最大程度的强度降低,而对于负弯矩较大的细长率则导致急剧的强度降低。对于1D,2D和3D横向加劲肋间距,在加劲的I形大梁中未观察到反向行为或临界腹板细长。当可以达到强度要求时,就可以放宽不平度公差。为I形板梁提供了建议的基于强度的腹板不平度标准。采用整体第一屈曲模式形状作为不平整度模式导致的腹板容差比张建议的在正弯时对未加劲的I形大梁的腹板容差更为保守。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号