首页> 外文会议>Structural Stability Research Council annual stability conference >Lateral-torsional buckling response of welded wide-flange girders
【24h】

Lateral-torsional buckling response of welded wide-flange girders

机译:焊接宽翼梁的横向扭转屈曲响应

获取原文

摘要

Lateral-torsional buckling is a failure mode characterized by coupled lateral movement and twisting within an unbraced length of a steel member under flexure. The current Canadian steel design standard, CSA S16-14, prescribes unified design equations for predicting lateral-torsional buckling resistance that do not distinguish between rolled and welded sections. Results of recent numerical studies have shown that the current design equations to determine lateral-torsional buckling resistance may be unconservative for welded wide-flange steel girders. This is attributed to their welded nature, which produces residual stress distributions very different from rolled sections and may reduce their lateral-torsional buckling resistance. Furthermore, the design equations were developed based on studies using welding and fabrication methods that differ significantly from today's practices. Given the extensive use of wide-flange steel girders in building structures and bridges, there is an urgent need for better understanding and improvement of lateral-torsional buckling provisions in North American design standards. In this paper, S16's adequacy is examined by means of physical testing, with the aim of obtaining critical inelastic buckling moments. Test frames that allow out-of-plane movement (while maintaining continuous vertical load application) are implemented. Eleven large-scale specimens with laterally and torsionally pinned end conditions are tested to examine the effects of the cross-section geometry, residual stress distribution, and fabrication and welding procedures on the inelastic buckling resistance of welded wide-flange steel girders. The results of pre-test analyses aid in the design of test girders that are most affected by lateral-torsional buckling.
机译:横向扭转屈曲是一种破坏模式,其特征在于,在挠曲作用下,钢构件的无支撑长度内的横向运动和扭转耦合。加拿大现行的钢设计标准CSA S16-14规定了用于预测侧向扭转屈曲阻力的统一设计方程式,该方程式无法区分轧制和焊接截面。最近的数值研究结果表明,用于确定横向扭转屈曲阻力的当前设计公式对于焊接的宽法兰钢梁可能是不保守的。这归因于它们的焊接性质,它产生的残余应力分布与轧制截面截然不同,并可能降低其横向扭转屈曲阻力。此外,设计方程是根据使用焊接和制造方法的研究得出的,而这些研究与当今的实践大不相同。鉴于在建筑结构和桥梁中广泛使用宽翼缘钢梁,迫切需要更好地理解和改进北美设计标准中的横向扭转屈曲规定。在本文中,通过物理测试来检验S16的适当性,目的是获得关键的非弹性屈曲力矩。实现了允许平面外移动(同时保持连续的垂直载荷应用)的测试框架。测试了11个横向和扭转固定端部条件的大型试样,以检查横截面几何形状,残余应力分布以及制造和焊接程序对焊接的宽法兰钢梁的非弹性屈曲阻力的影响。试验前分析的结果有助于设计受横向扭转屈曲影响最大的试验梁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号