首页> 外文会议>ASME international mechanical engineering congress and exposition >MODEL-BASED OPTIMAL CONTROL OF A SMALL REMOTELY OPERATED VEHICLE
【24h】

MODEL-BASED OPTIMAL CONTROL OF A SMALL REMOTELY OPERATED VEHICLE

机译:小型机动车辆基于模型的最优控制

获取原文

摘要

Remotely Operated Vehicles, ROVs, are useful devices that can greatly assist humans in the development deep-sea exploration and underwater tasks. These unmanned vehicles require human intervention for the realization of its underwater jobs and have the ability to carry multiple instruments, sensors and actuators according to the application. There are numerous commercial ROV platforms, ranging from inexpensive to very advanced and costly systems. Being an underactuated system, one of the most important factors in the development of a ROV is the design of its control system. Depending on the quality of the implemented control strategy, the functioning of the vehicle may or may not fail, or the accuracy with which its assignments are done may be seriously compromised. Different control strategies can be utilized for the stabilization and maneuvering of a ROV. The design of these strategies often require system parameter identification. Appropriate modeling and knowledge about the dynamic behavior of the system is essential for a successful parameter identification. One of the main parameters that must be identified is the drag coefficient of the ROV as it moves in the fluid. This parameter can be either experimentally measured, or estimated using the finite element method, to quantify the forces due to fluid-structure interaction. This work seeks the design and comparison of different advanced control techniques as applied to a small ROV. A commercial small ROV system has been chosen as the object of study and finite element simulations were carried out to estimate some of its mechanic parameters, using the commercial software COMSOL Multiphysics®. The nonlinear model of the system is developed and linearized to obtain its state space representation. The state space representation of the system is then used in the design of a LQR control system. The comparisons of the responses of the compensated systems allows assessing the suitability of the optimal control strategy for stabilization of ROVs.
机译:遥控车辆(ROV)是有用的设备,可以极大地帮助人类开展深海勘探和水下任务。这些无人驾驶车辆需要人工干预才能实现其水下作业,并具有根据应用携带多种仪器,传感器和执行器的能力。有许多商用ROV平台,范围从便宜到非常先进和昂贵的系统。作为欠驱动系统,ROV开发中最重要的因素之一就是其控制系统的设计。取决于所实施的控制策略的质量,车辆的功能可能会或可能不会失败,或者可能严重损害其分配的准确性。可以利用不同的控制策略来稳定和操纵ROV。这些策略的设计通常需要系统参数识别。适当的建模和有关系统动态行为的知识对于成功识别参数至关重要。必须确定的主要参数之一是ROV在流体中移动时的阻力系数。该参数可以通过实验测量,也可以使用有限元方法进行估算,以量化由于流体-结构相互作用而产生的力。这项工作寻求设计和比较应用于小型ROV的不同高级控制技术。选择了商用小型ROV系统作为研究对象,并使用商用软件COMSOLMultiphysics®进行了有限元模拟以估算其某些机械参数。对该系统的非线性模型进行了开发和线性化,以获得其状态空间表示。系统的状态空间表示然后用于LQR控制系统的设计中。补偿系统响应的比较可以评估ROV稳定化的最佳控制策略的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号