首页> 外文会议>ASME gas turbine India conference >SURROGATE BASED DESIGN OPTIMISATION OF COMBUSTOR TILE COOLING FEED HOLES
【24h】

SURROGATE BASED DESIGN OPTIMISATION OF COMBUSTOR TILE COOLING FEED HOLES

机译:基于替代品的燃烧器瓦片冷却给料孔的设计优化

获取原文

摘要

Gas turbine operating temperatures are projected to continue to increase and this leads to drawing more cooling air to keep the metals below their operational temperatures. This cooling air is chargeable as it has gone through several stages of compressor work. In this paper a surrogate based design optimization approach is used to reduce cooling mass flow on combustor tiles to attain pre-defined maximum metal surface temperatures dictated by different service life requirements. A series of Kriging based surrogate models are constructed using an efficient GPU based particle swarm algorithm. Various mechanical and manufacturing constraints such as hole ligament size, encroachment of holes onto other features like side rails, pedestals, dilution ports and retention pins etc. are built into the models and these models are trained using a number of high fidelity simulations. Furthermore these simulations employ the proprietary Rolls-Royce Finite Element Analysis (FEA) package SC03 to run thermal analysis predicting surface heat transfer coefficients, fluid temperatures and finally metal surface temperatures. These temperature predictions are compared against the pre-defined surface temperature limits for a given service life and fed back to the surrogate model to run for new hole configuration. This way the loop continues until an optimized hole configuration is attained. Results demonstrate the potential of this optimization technique to improve the life of combustor tile by reducing tile temperature and also to reduce the amount of cooling air required.
机译:燃气轮机的运行温度预计将继续升高,这将导致吸入更多的冷却空气以使金属保持在其运行温度以下。冷却空气经过了压缩机工作的多个阶段后便可以充入空气。在本文中,基于替代的设计优化方法用于减少燃烧器砖上的冷却质量流量,以达到由不同使用寿命要求决定的预定最大金属表面温度。使用基于GPU的高效粒子群算法构建了一系列基于Kriging的代理模型。将各种机械和制造约束条件(例如孔韧带尺寸,孔洞侵蚀到其他特征(如侧轨,底座,稀释端口和固定销等)上)内置到模型中,并使用大量高保真度模拟对这些模型进行训练。此外,这些模拟使用专有的劳斯莱斯有限元分析(FEA)程序包SC03进行热分析,预测表面传热系数,流体温度以及最终的金属表面温度。将这些温度预测值与给定使用寿命的预定义表面温度限制进行比较,然后反馈给替代模型以运行新的孔配置。这样,循环继续进行,直到获得优化的孔配置为止。结果表明,这种优化技术具有通过降低瓷砖温度来改善燃烧室瓷砖寿命以及减少所需冷却空气量的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号