首页> 外文会议>SPIE Astronomical Telescopes + Instrumentation Conference >Topological design of lightweight additively manufactured mirrors for space
【24h】

Topological design of lightweight additively manufactured mirrors for space

机译:轻质增材制造太空镜的拓扑设计

获取原文
获取外文期刊封面目录资料

摘要

Additive manufacturing (AM), more commonly known as 3D printing, is a commercially established technology for rapid prototyping and fabrication of bespoke intricate parts. To date, research quality mirror prototypes are being trialled using additive manufacturing, where a high quality reflective surface is created in a post-processing step. One advantage of additive manufacturing for mirror fabrication is the ease to lightweight the structure: the design is no longer confined by traditional machining (mill, drill and lathe) and optimised/innovative structures can be used. The end applications of lightweight AM mirrors are broad; the motivation behind this research is low mass mirrors for space-based astronomical or Earth Observation imaging. An example of a potential application could be within nano-satellites, where volume and mass limits are critical. The research presented in this paper highlights the early stage experimental development in AM mirrors and the future innovative designs which could be applied using AM.The surface roughness on a diamond-turned AM aluminium (AlSi_(10)Mg) mirror is presented which demonstrates the ability to achieve an average roughness of ~3.6nm root mean square (RMS) measured over a 3 × 3 grid. A Fourier transform of the roughness data is shown which deconvolves the roughness into contributions from the diamond-turning tooling and the AM build layers. In addition, two nickel phosphorus (NiP) coated AlSiioMg AM mirrors are compared in terms of surface form error; one mirror has a generic sandwich lightweight design at 44% the mass of a solid equivalent, prior to coating and the second mirror was lightweighted further using the finite element analysis tool topology optimisation. The surface form error indicates an improvement in peak-to-valley (PV) from 323nm to 204nm and in RMS from 83nm to 31nm for the generic and optimised light-weighting respectively while demonstrating a weight reduction between the samples of 18%. The paper-concludes with a discussion of the breadth of AM design that could be applied to mirror lightweighting in the future, in particular, topology optimisation, tessellating polyhedrons and Voronoi cells are presented.
机译:增材制造(AM),通常称为3D打印,是一项商业上建立的技术,用于快速原型化和制造定制的复杂零件。迄今为止,研究质量的镜面原型正在使用增材制造进行试验,其中在后处理步骤中创建了高质量的反射面。用于镜面制造的增材制造的优势之一是易于减轻结构重量:设计不再局限于传统的机械加工(铣床,钻床和车床),可以使用经过优化/创新的结构。轻型AM镜的最终应用广泛。这项研究的动机是用于天文天文或地球观测成像的低质量反射镜。潜在应用的一个例子可能是在纳米卫星中,其中体积和质量的限制至关重要。本文介绍的研究重点介绍了AM反射镜的早期实验开发以及未来可以使用AM的创新设计,并介绍了金刚石车削的AM铝(AlSi_(10)Mg)反射镜的表面粗糙度,表明了该技术的应用前景。在3×3网格上测得的平均粗糙度达到约3.6nm均方根(RMS)的能力。示出了粗糙度数据的傅立叶变换,该傅立叶变换将粗糙度反卷积为金刚石车削刀具和AM加工层的贡献。另外,比较了两个镀镍磷(NiP)的AlSiioMg AM反射镜的表面形状误差。一面镜子在涂层之前具有普通三明治式轻量设计,其质量为固体当量的44%,而第二面镜子则使用有限元分析工具拓扑优化技术进一步进行了轻量化。表面形状误差表明对于普通和优化的轻量化,峰谷(PV)从323nm改善到204nm,RMS从83nm改善到31nm,同时表明样品之间的重量减少了18%。本文最后讨论了AM设计的广度,该广度可应用于未来的镜面轻量化,特别是拓扑优化,细分多面体和Voronoi单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号