首页> 外文会议>SPIE Astronomical Telescopes + Instrumentation Conference >Application of the topography optimization technique to the design of a lightweight primary mirror for the GCT, a dual-mirror telescope proposed for the Cherenkov Telescope Array
【24h】

Application of the topography optimization technique to the design of a lightweight primary mirror for the GCT, a dual-mirror telescope proposed for the Cherenkov Telescope Array

机译:地形优化技术在GCT轻量主镜设计中的应用,GCT是为Cherenkov望远镜阵列提出的双镜望远镜

获取原文

摘要

Optimization techniques are powerful tools for producing lightweight structures with the maximum structural stiffness. They allow an optimized design to be produced directly for a given structure and. in this way, save considerable time in the design phase of a structure by avoiding multiple iterations between the definition of the design under computer-aided design (CAD) and the verification of the performance under finite-element (FE) analysis. There are three classes of optimization: size optimization, shape optimization and topology optimization. The topology optimization technique aims to find an optimal distribution of material given boundary conditions, i.e. the fixing points and the external loads. It starts from an initial volume representing a blank of the structure and removes the most unused material to meet the objective of mass reduction. In optomechanical engineering, this technique is met in the design of lightweight mirrors and especially in the design of their core-cell shapes.To provide reliable and useable results, this technique requires a fine and regular mesh of the mirror as well as a postprocessing of the results by the mechanical engineers. These constraints, combined with the necessity of using 3-D models, contribute an increase in the computation time and complicate the meshing. We propose here an innovative approach to this design problem by using topography optimization instead of topology optimization. Topography optimization, also named bead optimization, is a branch of the shape optimization and consists in introducing beads to a surface in order to increase its structural stiffness. The main advantage of this technique is that shell models can be used instead of solid models, easing the meshing operation and decreasing the number of degrees of freedom in the FE model, and thereby reducing computation cost.This paper presents an example of the application of this technique to the design of the primary mirror panel of the GCT (Gamma-ray Cherenkov Telescope), a dual-mirror 4-meter telescope proposed for the future Cherenkov Telescope Array. FE models and optimizations are made with MD.Patran and MD.Nastran respectively.
机译:优化技术是生产具有最大结构刚度的轻型结构的有力工具。它们允许直接针对给定的结构进行优化设计。这样,通过避免在计算机辅助设计(CAD)下的设计定义与有限元(FE)分析下的性能验证之间进行多次迭代,可以节省结构设计阶段的大量时间。优化分为三类:尺寸优化,形状优化和拓扑优化。拓扑优化技术旨在在给定边界条件(即固定点和外部载荷)的情况下找到材料的最佳分布。它从代表结构毛坯的初始体积开始,并去除最不用的材料,以达到减轻质量的目的。在光机械工程中,轻型镜的设计尤其是其核心单元形状的设计都满足了该技术的要求。为了提供可靠且可用的结果,该技术需要对镜进行精细且规则的网格划分以及对后视镜进行后处理机械工程师的结果。这些限制,加上使用3-D模型的必要性,导致计算时间增加,并使网格复杂化。我们在这里提出一种创新的方法,通过使用拓扑优化而不是拓扑优化来解决此设计问题。拓扑优化(也称为珠粒优化)是形状优化的一个分支,包括将珠粒引入表面以增加其结构刚度。该技术的主要优点是可以使用壳模型代替实体模型,从而简化了网格划分操作,并减少了有限元模型中的自由度,从而降低了计算成本。这项技术用于GCT(伽马射线Cherenkov望远镜)的主镜面板的设计,GCT是为未来的Cherenkov望远镜阵列提出的双镜4米望远镜。有限元模型和优化分别使用MD.Patran和MD.Nastran进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号