首页> 外文会议>AIAA guidance, navigation, and control conference;AIAA SciTech forum >Control Recovery of a Satellite with Flexible Appendages after Space Debris Impact
【24h】

Control Recovery of a Satellite with Flexible Appendages after Space Debris Impact

机译:空间碎片撞击后具有柔性附件的卫星的控制恢复

获取原文

摘要

Larger power requirements from modern spacecraft precipitate enormous solar arrays to fulfil budgetary needs. Although the solar arrays may have a relatively small influence on the total mass of the spacecraft system, large arrays with long flexible panels do affect the dynamics of the satellite bus through the Steiner terms in the moments of inertia. Unfortunately, such large arrays are broad targets for incoming orbital debris, and impacts are an increasing risk to attitude control and during guidance operations. This paper examines the effect of impacts on the response of a Rosetta-like spacecraft controlled by an adaptive controller. The control system design is based on simple adaptive control theory, and uses a stabilised, linear reference model to swiftly drive the plant output error to zero and hence achieving a commanded attitude. The adaptive controller is tuned using a linearised Euler-Bernoulli beam model as a computationally inexpensive flexible system. The elastic dynamics increases the controller effort and shows the effect of the elastic bodies on the controller system by the deviations from an implementation for a rigid satellite only. A sample investigation of an impulsive force, simulating a particle debris impact, shows the control effort exerted to stabilise the spacecraft. Additional simulations covering a range of particle momenta and impact location on the spacecraft show controller efforts for a satellite in a steady-state configuration and undergoing a three-axis manoeuvre. For individual impact cases, the controller shows a robust performance, even if there is some initial saturation of the actuators. In multiple impact scenarios, the control effort is much heavier and strong oscillatory behaviour is observed, indicating the limits of the controller.
机译:现代航天器对功率的更大需求催生了巨大的太阳能电池阵列,可以满足预算需求。尽管太阳能电池阵列对航天器系统总质量的影响相对较小,但具有长柔性面板的大型电池阵列的确会通过Steiner项影响惯性矩,从而影响卫星总线的动力。不幸的是,如此庞大的阵列是进入轨道碎片的广泛目标,而撞击对姿态控制和制导作业期间的风险日益增加。本文研究了影响对自适应控制器控制的Rosetta型航天器响应的影响。控制系统的设计基于简单的自适应控制理论,并使用稳定的线性参考模型将设备输出误差迅速驱动为零,从而达到指令的姿态。使用线性化的Euler-Bernoulli光束模型作为计算上便宜的灵活系统,对自适应控制器进行了调整。弹性动力学增加了控制器的工作量,并通过仅与刚性卫星实施方案的偏差来显示弹性体对控制器系统的影响。对冲力的样本研究模拟了微粒碎片的撞击,显示出为稳定航天器而施加的控制作用。涵盖了一系列粒子矩和航天器上撞击位置的附加仿真显示了控制器在稳态配置和三轴操纵下对卫星的努力。对于个别冲击情况,即使执行器有一些初始饱和,该控制器也表现出强大的性能。在多重影响的情况下,控制工作要重得多,并且观察到强烈的振荡行为,这表明了控制器的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号