首页> 外文会议>SPIE OPTO Conference >Experimental Simulation of Ranging Action Using Si Photonic Crystal Modulator and Optical Antenna
【24h】

Experimental Simulation of Ranging Action Using Si Photonic Crystal Modulator and Optical Antenna

机译:Si光子晶体调制器和光天线测距作用的实验模拟

获取原文

摘要

Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
机译:飞行时间LiDAR用于车辆的自动驾驶,而FMCW LiDAR则有可能实现更高的灵敏度。在这项研究中,我们基于Si光子学制造并测试了FMCW LiDAR的每个组件,并通过实验模拟了测距动作。在这里,我们驱动了一个Si光子晶体慢光调制器,该信号在500-1000 MHz的频带中具有线性调频信号,重复频率为100 kHz,以从窄线宽激光源产生FM信号光。接下来,我们将信号光分为两条路径。将一个插入到20-320 m的光纤延迟线中,并将其输出通过自由空间传输照射到充当光学天线的光子晶体慢光束控制设备上。当优化照射角度以使天线增益在设定的激光波长下达到最大时,光可以有效地耦合到天线中。我们将天线输出的光与另一路径的参考光无延迟地混合在一起,并通过平衡的光电二极管对其进行检测。我们观察到一个拍频信号,其频率与根据延迟线长度预测的理论值非常吻合。因此,我们成功进行了FMCW LiDAR的实验仿真。我们还观察到了拍频周围的频谱序列,其中,频率间的间隔等于重复频率,并且对应于30 cm的距离分辨率,这将通过扩展调制带宽而得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号