【24h】

Radiation Shielding Design of PWR Steam Generator

机译:PWR蒸汽发生器的辐射屏蔽设计

获取原文

摘要

Radiation safety and protection has key importance for safe nuclear power. Therefore one of the fundamental principles of Nuclear power plant design is to ensure the radiation safety of the workers and equipment. Proper shielding is required for environment and plant protection. An efficient and economical shield design of reactor components is of primary concern. Due to intense neutron flux in core, the reactor primary coolant is activated and acts as a radiation source throughout the primary loop of the reactor. The aim of this project is to study the coolant activation and provide radiation shield to this radiation source. The Chashma Nuclear Power Plant CHASNUPP unit-1 (C-1) is selected for this study. A detailed 3D model of steam generator of C-1 is developed employing shield design computer code MCBEND. The MCBEND computer program is dedicated radiation shield design computer code and employs the Monte Carlo techniques to simulate the radiation transport. Many Isotopes are formed through the activation of primary coolant but only Nitrogen-16 (N-16) activity is considered due to its significant production and half-life. The first step is to calculate the amount of N-16 production using analytical and Monte Carlo methods and compare with the FSAR results of C-1. The MCBEND simulated value is found as 4.10 MBq/g which is comparable to FSAR result of 4.59 MBq/g. The next step is to model homogenized steam generator source using MCBEND computer code and validate the shield design simulations against the FSAR values. For 80 cm Portland concrete shield thickness, MCBEND computer code simulates the dose rate of 0.1142 mSv/hr in comparison to FSAR value that is, 0.1mSv/hr for 80 cm of concrete. Design improvements are suggested on the basis of the validated model. On the employment of Iron Portland concrete, the shield thickness decreases from 80 cm to 27 cm. Similarly by adding Tungsten content to normal Portland concrete, the shield thickness even decreased to 75 cm for 5% W and 70 cm for 10% W-content.
机译:辐射安全性和保护具有安全核电的重要性。因此,核电厂设计的基本原则之一是确保工人和设备的辐射安全。环境和植物保护需要适当的屏蔽。反应器组件的高效且经济的盾构设计具有主要关注点。由于核心中的浓度,反应器初级冷却剂被活化并用作反应器的整个初级环中的辐射源。该项目的目的是研究冷却剂激活并为该辐射源提供辐射屏蔽。选择Chashma核电站Chasnupp单元-1(C-1)进行本研究。开发了C-1蒸汽发生器的详细3D模型,采用屏蔽设计计算机代码McBend。 McBend计算机程序是专用辐射屏蔽设计计算机代码,采用蒙特卡罗技术来模拟辐射运输。通过激活原发性冷却剂的激活形成许多同位素,但由于其显着的生产和半衰期,仅考虑氮-16(N-16)活性。第一步是使用分析和蒙特卡罗方法计算N-16产生的量,并与C-1的FSAR结果进行比较。 McBend模拟值被发现为4.10 MBq / g,其与4.59 mbq / g的FSAR结果相当。下一步是使用McBend计算机代码模拟均质蒸汽发生器源,并针对FSAR值验证屏蔽设计模拟。对于80厘米的波特兰混凝土屏蔽厚度,与FSAR值相比,McBend计算机代码模拟了0.1142 msv / hr的剂量率,即80厘米的混凝土的0.1msv / hr。根据验证的模型建议设计改进。关于铁路兰混凝土的就业,屏蔽厚度从80厘米降至27厘米。类似地,通过将​​钨含量添加到正常的波特兰混凝土中,屏蔽厚度甚至降低至75厘米,5%W和70厘米,含量为10%W含量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号