首页> 外文会议>SPWLA annual logging symposium;Society of Petrophysicists and Well Log Analysts, inc >AN UNSUPERVISED LEARNING ALGORITHM TO COMPUTE FLUID VOLUMES FROM NMR T1-T2 LOGS IN UNCONVENTIONAL RESERVOIRS
【24h】

AN UNSUPERVISED LEARNING ALGORITHM TO COMPUTE FLUID VOLUMES FROM NMR T1-T2 LOGS IN UNCONVENTIONAL RESERVOIRS

机译:从非常规油藏中的NMR T1-T2测井计算流体体积的无监督学习算法

获取原文

摘要

A key objective for formation evaluation in unconventional reservoirs is to estimate reservoir quality by quantifying the volumes of different fluid components. Spectroscopy-based tools can estimate the total organic carbon in a reservoir. Resistivity and dielectric tools are sensitive to the water-filled porosity. On the other hand, nuclear magnetic resonance (NMR) tools have the capability and sensitivity to further partition the hydrocarbon and water into fluid components based on their properties and geometry in the pore space.ğ‘‡_1−ğ‘‡_2 maps from NMR logging tools show uniquesignatures for hydrocarbons such as gas, bitumen, and producible and bound oil. Similarly, capillary and clay-bound water and water in larger pores have different signatures. These signatures depend on many factors: properties of the fluids (composition, viscosity), properties of the rock (pore geometry) and the geometrical configuration of fluid phases within the pore space. Unless the fluids have very distinct and non-overlapping signatures in the ğ‘‡_1−ğ‘‡_2 domain, it ischallenging to visually separate the contribution from different fluids and estimate fluid volumes from ğ‘‡_1−ğ‘‡_2 maps.This problem was addressed by an automated unsupervised learning algorithm called blind source separation (BSS), wherein the NMR ğ‘‡_1−ğ‘‡_2 maps of anentire logged interval are factorized into two matrices: the first matrix contains the ğ‘‡_1−ğ‘‡_2 signatures of thedifferent fluids and the second contains the corresponding volumes. This method has been shown to work well on multiple field data sets, where there was a sufficient dynamic range in the underlying volume fractions.In this paper, we address two well-known limitations in the BSS algorithm. First, the algorithm assumes a dynamic range in the volume fractions. For this reason, the entire logged interval is considered in the matrix factorization. However, doing so mixes the effects in ğ‘‡_1−ğ‘‡_2 maps due to changes in rock properties withchanges in fluid volumes. Second, it assumes that the number of sources (or fluids) is known a priori. This is a well-known ill-conditioned problem and is akin to model-order selection in the field of signal processing.In this paper, we propose several modifications in the algorithm to address the above two limitations. First, we leverage the information that the NMR signature of a fluid is expected to be connected in the ğ‘‡_1−ğ‘‡_2 domain.This expectation arises from the smoothness constraint imposed on the inversion algorithm used to compute the maps from the measured magnetization data as well as the underlying smooth distribution of the composition of crude oil. Second, we assume that each point in ğ‘‡_1−ğ‘‡_2 space corresponds at most to one fluid. Lastly, wepropose a quantitative metric to guide the analyst in selecting the number of components.The method consists of the following steps. First, we use the signal-to-noise ratio (SNR) in the data to obtain a rough estimate of the overall footprint of all the fluids. Second, a non-negative matrix factorization (NMF) technique is used to compute a footprint corresponding to the different fluids. A hierarchical clustering method is used to ensure that the footprint of each fluid is compact and connected in the ğ‘‡_1−ğ‘‡_2 domain.Subsampling of the maps is used to study the stability and compute the most likely number of fluids present. The last step consists of applying the mask corresponding to the different fluids to the measured ğ‘‡_1−ğ‘‡_2 maps to determine the fluid volumes.There are a few key advantages of this unsupervised learning method over other methods proposed in the literature. First, similar to BSS, it does not require predetermined information about cutoffs to distinguish fluids. Second, simulations show that the method does not require a wide variation in fluid volumes at different depths. This allows the petrophysicist to pick a relatively short depth interval consisting of one rock type to study ğ‘‡_1−ğ‘‡_2 map variations due to variations in fluidproperties. Last, it provides a metric to help guide the analyst in selecting the number of fluids in the underlying dataset. We demonstrate the application of this method on simulated datasets as well as field data sets from the Eagle Ford formation and Permian basin.
机译:非常规油藏评价的关键目标是通过量化不同流体组分的体积来估计油藏质量。基于光谱的工具可以估算储层中的总有机碳。电阻率和介电工具对充水孔隙率敏感。另一方面,核磁共振(NMR)工具具有根据其在孔隙空间中的性质和几何形状将烃和水进一步划分为流体成分的能力和敏感性。 NMR测井仪提供的½’‡_1−ğ‘‡_2地图显示了碳氢化合物的独特特征,例如天然气,沥青以及可生产和结合的石油。同样,毛细管和粘土结合的水以及较大孔隙中的水也具有不同的特征。这些特征取决于许多因素:流体的性质(组成,粘度),岩石的性质(孔隙几何形状)以及孔隙空间内流体相的几何构造。除非流体在ğ‘‡_1−ğ’‡_2域中具有非常明显且不重叠的签名,否则将在视觉上将不同流体的贡献分开并从ğ’‡_1−ğ’‡_2映射估计流体量具有挑战性。 通过称为盲源分离(BSS)的自动化无监督学习算法解决了该问题,其中前记录间隔的NMRğ'‡_1âˆ'ğ'‡_2映射分解为两个矩阵:第一个矩阵包含ğ'‡_1â不同流体的“ğ”‡_2签名,第二个包含相应的体积。事实证明,该方法在多个现场数据集上效果很好,其中基础体积分数中有足够的动态范围。 在本文中,我们解决了BSS算法中两个众所周知的局限性。首先,该算法假定体积分数为动态范围。因此,在矩阵分解中考虑了整个记录间隔。但是,由于岩石属性的变化和流体体积的变化,这样做会混合½’‡_1−ğ’‡_2地图中的效果。其次,假定源(或流体)的数量是先验已知的。这是一个众所周知的病态问题,类似于信号处理领域中的模型顺序选择。 在本文中,我们提出了对算法的几种修改,以解决上述两个限制。首先,我们利用信息来预测流体的NMR特征将连接到ğ'‡_1âˆ'ğ'‡_2域中,这种期望来自对反演算法施加的平滑度约束,该反演算法用于从反演算法计算地图测量的磁化数据以及原油组成的基本平滑分布。其次,我们假设‘‘_1’ˆ’’‘‡_2空间中的每个点最多对应一个流体。最后,我们提出了一种量化指标,以指导分析师选择组件的数量。 该方法包括以下步骤。首先,我们在数据中使用信噪比(SNR),以获得对所有流体总足迹的粗略估计。其次,非负矩阵分解(NMF)技术用于计算与不同流体相对应的足迹。使用分层聚类方法来确保每种流体的足迹都紧凑并且在ğ'‡_1âˆ'ğ'‡_2域中进行连接。通过对地图进行二次采样来研究稳定性并计算出最有可能出现的流体数量。最后一步是将与不同流体相对应的蒙版应用于已测量的‘‘‡_1’ˆ’’‘‡_2图,以确定流体量。 与文献中提出的其他方法相比,这种无监督学习方法具有一些关键优势。首先,类似于BSS,它不需要有关截止值的预定信息即可区分流体。其次,仿真表明,该方法不需要在不同深度的流体量有很大的变化。这使得岩石物理学家可以选择由一种岩石类型组成的相对较短的深度间隔,以研究由于流体性质的变化引起的‘’_1_1ˆ’’‘‡_2地图变化。最后,它提供了一个度量标准,可帮助指导分析师选择基础数据集中的流体数量。我们证明了该方法在模拟数据集以及Eagle Ford地层和二叠纪盆地的现场数据集上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号