首页> 外文会议>SPWLA annual logging symposium >AN UNSUPERVISED LEARNING ALGORITHM TO COMPUTE FLUID VOLUMES FROM NMR T1-T2 LOGS IN UNCONVENTIONAL RESERVOIRS
【24h】

AN UNSUPERVISED LEARNING ALGORITHM TO COMPUTE FLUID VOLUMES FROM NMR T1-T2 LOGS IN UNCONVENTIONAL RESERVOIRS

机译:一种无监督的学习算法,以从非传统水库中计算来自NMR T1-T2的流体量

获取原文

摘要

A key objective for formation evaluation in unconventional reservoirs is to estimate reservoir quality by quantifying the volumes of different fluid components. Spectroscopy-based tools can estimate the total organic carbon in a reservoir. Resistivity and dielectric tools are sensitive to the water-filled porosity. On the other hand, nuclear magnetic resonance (NMR) tools have the capability and sensitivity to further partition the hydrocarbon and water into fluid components based on their properties and geometry in the pore space. _1? _2 maps from NMR logging tools show uniquesignatures for hydrocarbons such as gas, bitumen, and producible and bound oil. Similarly, capillary and clay-bound water and water in larger pores have different signatures. These signatures depend on many factors: properties of the fluids (composition, viscosity), properties of the rock (pore geometry) and the geometrical configuration of fluid phases within the pore space. Unless the fluids have very distinct and non-overlapping signatures in the _1? _2 domain, it ischallenging to visually separate the contribution from different fluids and estimate fluid volumes from _1? _2 maps.This problem was addressed by an automated unsupervised learning algorithm called blind source separation (BSS), wherein the NMR _1? _2 maps of anentire logged interval are factorized into two matrices: the first matrix contains the _1? _2 signatures of thedifferent fluids and the second contains the corresponding volumes. This method has been shown to work well on multiple field data sets, where there was a sufficient dynamic range in the underlying volume fractions.In this paper, we address two well-known limitations in the BSS algorithm. First, the algorithm assumes a dynamic range in the volume fractions. For this reason, the entire logged interval is considered in the matrix factorization. However, doing so mixes the effects in _1? _2 maps due to changes in rock properties withchanges in fluid volumes. Second, it assumes that the number of sources (or fluids) is known a priori. This is a well-known ill-conditioned problem and is akin to model-order selection in the field of signal processing.In this paper, we propose several modifications in the algorithm to address the above two limitations. First, we leverage the information that the NMR signature of a fluid is expected to be connected in the _1? _2 domain.This expectation arises from the smoothness constraint imposed on the inversion algorithm used to compute the maps from the measured magnetization data as well as the underlying smooth distribution of the composition of crude oil. Second, we assume that each point in _1? _2 space corresponds at most to one fluid. Lastly, wepropose a quantitative metric to guide the analyst in selecting the number of components.The method consists of the following steps. First, we use the signal-to-noise ratio (SNR) in the data to obtain a rough estimate of the overall footprint of all the fluids. Second, a non-negative matrix factorization (NMF) technique is used to compute a footprint corresponding to the different fluids. A hierarchical clustering method is used to ensure that the footprint of each fluid is compact and connected in the _1? _2 domain.Subsampling of the maps is used to study the stability and compute the most likely number of fluids present. The last step consists of applying the mask corresponding to the different fluids to the measured _1? _2 maps to determine the fluid volumes.There are a few key advantages of this unsupervised learning method over other methods proposed in the literature. First, similar to BSS, it does not require predetermined information about cutoffs to distinguish fluids. Second, simulations show that the method does not require a wide variation in fluid volumes at different depths. This allows the petrophysicist to pick a relatively short depth interval consisting of one rock type to study _1? _2 m
机译:非传统水库中形成评估的关键目标是通过量化不同流体组分的体积来估计储层质量。基于光谱的工具可以估算储层中的总有机碳。电阻率和电介质工具对充满水孔隙率敏感。另一方面,核磁共振(NMR)工具具有进一步将烃和水进入流体部件的能力和敏感性,基于其在孔隙空间中的性质和几何形状。 _1? _2来自NMR Logging Tools的地图显示了碳氢化合物的卸载,例如气体,沥青和生产和结合的油。类似地,毛细管和粘土的水和较大孔的水具有不同的签名。这些签名取决于许多因素:流体的性质(组成,粘度),岩石(孔几何形状)的性质以及孔隙空间内的流体相的几何构造。除非液体在_1中具有非常不同的且不重叠的签名,否则_2域,它是在视觉上与不同流体的贡献分开,从_1中估计流体量? _2映射。通过称为盲源分离(BSS)的自动无监督学习算法来解决这个问题,其中NMR _1? _2 Aentire Logged Interval的映射被归属于两个矩阵:第一个矩阵包含_1? _2分层流体的签名和第二种含有相应的体积。该方法已被证明在多场数据集上运行良好,其中底层体积分数中存在足够的动态范围。在本文中,我们解决了BSS算法中的两个众所周知的限制。首先,算法在体积分数中呈现动态范围。因此,在矩阵分解中考虑整个记录的间隔。但是,这样做会混合_1中的效果? _2由于岩石属性的变化而导致的地图在流体体积中换气。其次,它假设源(或流体)的数量是已知的先验。这是一个众所周知的不良状态问题,类似于信号处理领域的模型订单选择。在本文中,我们提出了算法中的几种修改来解决上述两个限制。首先,我们利用预期流体的NMR签名在_1中连接的信息? _2 Domain.This期望由用于从测量的磁化数据计算地图的反演算法上施加的平滑度约束以及原油组合物的底层平滑分布。其次,我们假设_1中的每个点? _2空间最多对应于一个流体。最后,Wepropose定量指标指导分析师选择组件数量。该方法包括以下步骤。首先,我们使用数据中的信噪比(SNR)来获得所有流体的整体占地面积的粗略估计。其次,使用非负矩阵分解(NMF)技术来计算与不同流体对应的占地面积。分层聚类方法用于确保每个流体的占地面积紧凑并且在_1中连接? _2 Domain.Subpspling地图用于研究稳定性并计算存在的最可能数量的流体。最后一步包括将对应于不同流体的掩模应用于测量的_1? _2映射以确定流体量。在文献中提出的其他方法,这种无监督的学习方法存在一些关键优势。首先,类似于BSS,它不需要关于截止的预定信息以区分流体。其次,仿真表明,该方法不需要在不同深度处的流体体积的宽变化。这允许岩石物理学家选择一个相对短的深度间隔,包括一个岩石类型来研究_1? _2米

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号