首页> 外文会议>ASME international mechanical engineering congress and exposition >DESIGN AND OPTIMIZATION OF A MULTIPURPOSE URBAN FIREFIGHTING AND DISASTER RELIEF UAV
【24h】

DESIGN AND OPTIMIZATION OF A MULTIPURPOSE URBAN FIREFIGHTING AND DISASTER RELIEF UAV

机译:多用途城市防灾减灾无人机的设计与优化

获取原文

摘要

This study outlines the design and optimization processes for the development of a multipurpose urban firefighting and disaster relief unmanned aerial vehicle (UAV). The design strives to attack and suppress fires that occur in high rise structures at heights greater than can be reached by ladder truck. The design also strives to deliver a payload of disaster relief supplies to affected areas, reducing risk to ground transport efforts. The study outlines the design and optimization of design components utilizing SolidWorks and testing of these components using SolidWorks Simulation and Flow Simulation packages. This study details the development of the final propeller and frame design, and the range of tests performed within SolidWorks to ensure the design can perform to the required standards. Given the dimensional advantages and torque cancellation capabilities a coaxial octocopter frame is developed. In designing and testing a propeller the proposed design is capable of producing a maximum thrust of 118 lbf. with a minimum factor of safety of 2.238. The propeller spacings are optimized to produce maximum thrust in both the coaxial and in-plane directions which are 23.6 inches and 25.6 inches respectively. For urban firefighting the selected hose and nozzle combination are capable of supplying 60 GPM of water at a height of 150 ft. from the ground. At this loading the minimum factors of safety of the frame and propeller are determined to be 2.238 and 3.034 respectively. The corresponding fatigue lives under prescribed number of cycles are determined to be infinite for both frame and propeller. Using rotorcraft theory, the theoretical hover time that the UAV can maintain in firefighting is determined to be 1.7 hours. Using a combination of SolidWorks Flow Simulation and aerodynamics theory the maximum velocity of the UAV at a pitch of 30 degrees from vertical, hauling a box with dimensions capable of carrying 200 lbs. of relief goods, is determined to be 85 mph. At disaster relief payload capacity the designed frame and propeller are capable of maintaining factors of safety of 3.226 and 3.034 respectively. These factors of safety correlate to fatigue lives of the frame and propeller of 15.98 years and 19.12 years respectively, under prescribed loading. The theoretical flight time the UAV can maintain for disaster relief is determined to be 1.618 hours. This study provides optimized propeller and frame designs along with selections of engines and other important components for building a multipurpose UAV.
机译:这项研究概述了开发多功能城市消防和救灾无人机的设计和优化过程。该设计致力于扑灭和抑制高层建筑中发生的火灾,这些火灾的高度要超过梯车可以达到的高度。该设计还努力将有效的救灾物资运送到受灾地区,以减少地面运输工作的风险。该研究概述了使用SolidWorks进行设计组件的设计和优化,以及使用SolidWorks Simulation和Flow Simulation软件包对这些组件进行测试。这项研究详细介绍了最终螺旋桨和机架设计的开发,以及在SolidWorks内进行的一系列测试,以确保设计可以达到要求的标准。考虑到尺寸优势和扭矩抵消功能,开发了同轴八轴飞行器框架。在设计和测试螺旋桨时,建议的设计能够产生最大118 lbf的推力。最低安全系数为2.238。螺旋桨的间距经过优化,可在同轴和平面方向上产生最大推力,分别为23.6英寸和25.6英寸。对于城市消防,选定的软管和喷嘴组合能够在距地面150英尺的高度供应60 GPM的水。在此载荷下,机架和螺旋桨的最小安全系数分别确定为2.238和3.034。确定在规定的循环次数下,相应的疲劳寿命对于机架和螺旋桨都是无限的。使用旋翼飞行器理论,无人机可以在消防中维持的理论悬停时间被确定为1.7小时。结合使用SolidWorks Flow Simulation和空气动力学理论,可以将无人机的最大速度与垂直方向成30度角,从而拖出尺寸能够承载200磅的盒子。的救援物资被确定为时速85英里/小时。在disaster灾有效载荷能力下,设计的机架和螺旋桨能够分别维持3.226和3.034的安全系数。这些安全因素在规定的载荷下分别与框架和螺旋桨的疲劳寿命分别为15.98年和19.12年。无人机可以为救灾而维持的理论飞行时间被确定为1.618小时。这项研究提供了优化的螺旋桨和机架设计,以及选择发动机和其他重要部件的信息,以构建多功能无人机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号