首页> 外文会议>ASME international mechanical engineering congress and exposition >SECOND LAW ANALYSIS OF PASSIVE MICRO-MIXING IN RECTANGULAR MICROCHANNELS WITH FLOW OBSTACLES
【24h】

SECOND LAW ANALYSIS OF PASSIVE MICRO-MIXING IN RECTANGULAR MICROCHANNELS WITH FLOW OBSTACLES

机译:具有流动障碍的矩形微通道中无源微混合的第二定律分析

获取原文

摘要

Passive micromixers have application in the biosciences area. In particular, passive micromixers that may be used as part of point-of-care (POC) diagnostic testing devices are becoming common-place and have application in developed, developing, and relatively undeveloped locales. Characterizing and improving mixing efficiency in these devices is an ongoing research effort. Different channel geometries and flow obstacles lead to varying degrees of mixing effectiveness and serve to increase chaotic advective mixing in contrast to the molecular diffusive mixing that occurs even in the absence of these obstacles. Entropy is generated due to these, and other, irreversible processes. Efficient micromixer design is of interest to biomedical and mechanical engineers working in the biosciences area. The entropy generation rate, we contend, can provide an aid in determining how thoroughly mixed fluids in the channel have become, as well as provide insight into improving channel design to maximize desired outcomes, such as mixing, and minimizing losses due to heat transfer and power consumption. In this paper, we focus our analysis on numerical simulations conducted using computational fluid dynamics (CFD) on a supercomputer-cluster to do simulations with extended mesh refinement and very small residuals. This enabled us to test a wide range of flows with varying Reynolds numbers. The configuration of flow and species parameters within the simulations were compared to experimental results to confirm their validity. We show that varying the geometry of the channel can lead to a measurable increase in entropy generation via the Second Law of Thermodynamics. Further, we show that this increase in entropy is linked to mixing from obstacle-induced chaotic advection and diffusion. We provide evidence of a positive correlation between the efficiency of the mixing process and entropy generation. These findings will aid in the design of more efficient portable health care-related devices, particular in remote or underdeveloped regions where power utilization is a critical concern.
机译:被动式微混合器已在生物科学领域得到应用。尤其是,可以用作即时诊断(POC)诊断测试设备一部分的无源微型混合器正变得司空见惯,并已在发达,发展中和相对不发达的地区中得到应用。在这些设备中表征和提高混合效率是一项持续不断的研究工作。与不存在这些障碍的情况下发生的分子扩散混合相反,不同的通道几何形状和流动障碍导致不同程度的混合效果,并有助于增加混乱的对流混合。由于这些以及其他不可逆过程,会产生熵。在生物科学领域工作的生物医学和机械工程师对有效的微型混合器设计感兴趣。我们认为,熵的产生速率可以帮助确定通道中混合流体的彻底程度,并有助于深入研究改进通道设计以最大程度地实现所需的结果(例如混合),并最大程度地减少由于传热和传热而造成的损失。能量消耗。在本文中,我们将分析重点放在使用超级计算机群集上的计算流体动力学(CFD)进行的数值模拟上,以进行具有扩展网格细化和非常小的残差的模拟。这使我们能够测试各种具有不同雷诺数的流动。将模拟中的流量和物种参数配置与实验结果进行比较,以确认其有效性。我们表明,通过热力学第二定律,改变通道的几何形状可以导致熵产生的可测量增加。此外,我们表明,这种熵的增加与障碍物引起的混沌对流和扩散的混合有关。我们提供了混合过程的效率与熵产生之间呈正相关的证据。这些发现将有助于设计效率更高的便携式医疗保健相关设备,尤其是在电力利用率至关重要的偏远地区或欠发达地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号