首页> 外文会议>ASME international mechanical engineering congress and exposition >A NUMERICAL AND EXPERIMENTAL STUDY OF LAMINAR UNSTEADY LID-DRIVEN CAVITY FLOWS
【24h】

A NUMERICAL AND EXPERIMENTAL STUDY OF LAMINAR UNSTEADY LID-DRIVEN CAVITY FLOWS

机译:层流非定常驱动腔流动的数值和实验研究

获取原文

摘要

An experimental and numerical study was conducted to study unsteady lid-driven cavity flows. More specifically, the development of the circulation patterns inside a square cavity due to the movement of a rigid impermeable lid at constant velocity was observed experimentally and predicted numerically by CFD codes. Particle Image Velocimeter (PIV) technique was used to determine the flow field as it develops from stagnation to steady state inside a one inch (25.4 mm) square cavity driven by an impermeable lid. To avoid the three dimensional effects on the primary vortex, the depth of the cavity is taken to be 5 inches (127 mm). Working fluid is water and it is seeded with hallow glass spheres with 10 microns diameter. Experimental study was conducted for different lid velocities corresponding to Reynolds numbers for laminar to intermittent turbulence. The numerical study was carried out using commercial and in-house CFD codes for the steady state case, and using a commercial CFD code for the unsteady case. The predictions of unsteady flow field inside the two-dimensional square cavity were made using these codes which employ second order accurate (temporally and spatially) implicit numerical schemes. A time and mesh independence study was carried out to determine the optimum mesh size and time increment for the unsteady case study. Comparisons of the numerically predicted and experimentally measured velocity fields are made for steady and unsteady cases. The results indicate that the numerical predictions capture the characteristics of the circulation inside the cavity reasonably well however the magnitude of the velocities are underestimated.
机译:进行了实验和数值研究,以研究非恒定盖驱动的腔体流动。更具体地,通过实验观察到由于刚性不可渗透盖以恒定速度运动而引起的方腔内的循环模式的发展,并且通过CFD代码对其进行了数值预测。使用粒子图像测速仪(PIV)技术确定由不渗透盖驱动的1英寸(25.4 mm)方腔内从停滞发展到稳态的流场。为了避免对一次涡旋产生三维影响,腔体的深度应设为5英寸(127毫米)。工作流体是水,并用直径10微米的空心玻璃球播种。针对层流至间歇湍流的雷诺数对应的不同盖速进行了实验研究。对于稳态情况,使用商业和内部CFD代码进行了数值研究,对于非稳态情况,使用了商业CFD代码进行了数值研究。使用这些代码对二维方腔内部的非定常流场进行了预测,这些代码采用了二阶精确(在时间和空间上)的隐式数值方案。进行了时间和网格独立性研究,以确定非稳定案例研究的最佳网格尺寸和时间增量。对稳态和非稳态情况下的数值预测和实验测得的速度场进行了比较。结果表明,数值预测可以很好地捕捉空腔内部的循环特征,但是速度的大小却被低估了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号