首页> 外文会议>SPIE Nanoscience + Engineering Conference >MnFe_2O_4 and MnO_2 nanoparticle-based high-temperature, air-stable, long-term antioxidation cermet solar selective absorbers
【24h】

MnFe_2O_4 and MnO_2 nanoparticle-based high-temperature, air-stable, long-term antioxidation cermet solar selective absorbers

机译:MnFe_2O_4和MnO_2纳米基高温,空气稳定,长期抗氧化的金属陶瓷太阳能选择性吸收剂

获取原文

摘要

Concentrated solar power (CSP) systems need to complement the photovoltaic (PV) technology via energy storage to better integrate solar electricity in to power grids. The efficiency of CSP systems can improve with high optical absorption in the solar spectrum regime and low emittance in the infrared (IR) spectrum, thereby reaching higher operation temperatures for lower levelized cost of energy. High-temperature, air-stable solar selective absorbers made with cermet composite materials that have optimal properties of both ceramic and metal can be the solution to this goal; however, this achievement has been difficult due to metal oxidation at high temperatures. Current state-of-the-art product such as the Pyromark® 2500 black paint has a significantly high solar absorbance (α_(solar)=97%) in the solar spectrum regime but also has a high thermal emittance loss (ε=88%) in the IR spectrum at 750 °C. Here, we demonstrate outstanding optical responses of thermodynamically-stable, high-temperature, low-cost long-term antioxidation cermet solar selective absorber coatings with MnFe_2O_4 and MnO_2 nanoparticles and silicone precursors as Si-rich matrices that undergo interdiffusion reaction with Stainless Steel 310 (SS310). It has been shown that absorbers with MnFe_2O_4 nanoparticles have solar absorbance of ~92.5%, thermal emittance of 55%, and thermal efficiency of 88-89% posterior to annealing at 750°C for 700 hours in air, and those with MnO_2 nanoparticles have solar absorbance of ~91.5%, thermal emittance of 52.5%, and thermal efficiency of 88% posterior to annealing at 750°C for 700 hours in air. We expect that the solar selective absorber coatings with such high thermal efficiencies and high-temperature stability in air will lead to a breakthrough in the market of CSP systems.
机译:集中式太阳能(CSP)系统需要通过储能来补充光伏(PV)技术,以更好地将太阳能集成到电网中。 CSP系统的效率可以通过提高太阳光谱范围内的光吸收和降低红外线(IR)光谱中的发射率来提高,从而达到更高的工作温度,从而降低了能源的平均成本。用金属陶瓷复合材料制成的高温,空气稳定的太阳能选择性吸收剂,可以同时达到陶瓷和金属的最佳性能,可以解决此问题。但是,由于高温下的金属氧化,因此难以实现。当前最先进的产品(例如Pyromark®2500黑色涂料)在太阳光谱范围内具有很高的日光吸收率(α_(solar)= 97%),但还具有很高的热发射率损耗(ε= 88%) )在750°C的红外光谱中。在这里,我们展示了具有MnFe_2O_4和MnO_2纳米粒子以及有机硅前驱物作为热硅稳定的高温动态,低成本长期抗氧化金属陶瓷太阳能选择性吸收体涂层的杰出光学响应,这些富硅基质经历了与不锈钢310的相互扩散反应( SS310)。结果表明,含有MnFe_2O_4纳米粒子的吸收剂在空气中在750°C退火700小时后的吸光度约为92.5%,热辐射率为55%,热效率为88-89%,而含有MnO_2纳米粒子的吸收剂具有-95%的吸收率。在750°C的空气中退火700小时后,其吸光度约为91.5%,热辐射率为52.5%,热效率为88%。我们期望具有如此高的热效率和空气中高温稳定性的太阳能选择性吸收器涂料将导致CSP系统市场的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号