首页> 外文会议>IEEE International Magnetics Conference >Directly observed dynamics of distorted vortex cores including asymmetric Bloch walls utilizing soft X-ray microscopy.
【24h】

Directly observed dynamics of distorted vortex cores including asymmetric Bloch walls utilizing soft X-ray microscopy.

机译:使用软X射线显微镜可直接观察到扭曲的涡流核心(包括不对称Bloch壁)的动力学。

获取原文

摘要

Spin structures including domain walls and magnetic vortices have attracted enormous interests not only due to their fascinating topological textures but also their potentials in a wealth of technological applications such as high efficient storage and memory devices. In the research of those spin structures, synchrotron-based microscopes have been playing key roles by direct imaging of static and dynamic behaviors of spin structures and therefore providing a powerful insight into the underlying physics of nanospin phenomena and an essential knowledge for their applications in advanced nanotechnologies [1, 2]. In our work, we employed a full-field soft X-ray microscope (XM-1) at Advanced Light Source (ALS) to directly observe non-trivially distorted vortex cores consisting of asymmetric Bloch walls and their dynamics. Fig. 1shows the deformed vortex core observed in an asymmetric permalloy (Py, Ni80Fe20) disk with a height of h = 100 nm, a diameter of D = 500 nm, and an asymmetric ratio of r = 0.3D (a) together with simulated vortex core and the out-of-plane (OOP) magnetic component (mz) larger than 0.7 (b). The distorted vortex core was found to be vortex cores placing non-coaxially on top and bottom surface of the disk, which are connected by an asymmetric Bloch wall creating flux closer domain. Such core structure is significantly distinguished from common circular vortex cores characterized by a single vortex core (polarity, p) aligned on both surfaces of a magnetic element pointing either up or down and a circular in-plane domain (circularity, c) rotating either clockwise or counter-clockwise [3, 4]. Interestingly, the nontrivially shaped vortex core shows an abnormal dynamic behavior. Unlike the traditional gyrotropic motions of circular vortex cores, sloshing motion was observed in the distorted core although micromagnetic simulations demonstrated that vortex cores on top and bottom surfaces still have gyrotropic motions. The unique dynamic motion of the deformed vortex core is likely due to the asymmetric Bloch wall restricting the motions of vortex cores on surfaces [5]. This research was also supported by Leading Foreign Research Institute Recruitment Program through NRF (2012K1A4A3053565) and by the DGIST R&D program of the Ministry of Science, ICT and future Planning (17-BT-02. Work at the ALS was supported by the U.S. Department of Energy (DE-AC02-05CH11231).
机译:包括畴壁和磁涡旋在内的自旋结构不仅具有引人入胜的拓扑结构,而且还具有在诸如高效存储和存储设备等众多技术应用中的潜力,因而引起了人们的极大兴趣。在对这些自旋结构的研究中,基于同步加速器的显微镜通过直接对自旋结构的静态和动态行为进行成像而发挥了关键作用,因此,它们为纳米自旋现象的基本物理学提供了强大的见识,并为它们在先进技术中的应用提供了必不可少的知识。纳米技术[1,2]。在我们的工作中,我们在高级光源(ALS)处使用了全视野软X射线显微镜(XM-1),以直接观察由不对称Bloch壁及其动力学组成的不易变形的涡旋核。图1显示了在不对称坡莫合金(Py,Ni 80 20 高度为h = 100 nm,直径为D = 500 nm,不对称比为r = 0.3D的圆盘(a)以及模拟的涡旋核和面外(OOP)磁性分量(m z )大于0.7(b)。发现扭曲的涡流芯是非同轴地放置在磁盘顶部和底部表面上的涡流芯,它们通过不对称的Bloch壁连接,从而形成磁通更密的磁畴。这种磁芯结构明显不同于普通的圆形涡流磁芯,其特征在于,单个涡流磁芯(极性,p)排列在磁性元件的两个表面上,指向向上或向下,以及圆形的平面内磁畴(圆度,c),沿顺时针方向旋转或逆时针[3,4]。有趣的是,非平凡形状的涡旋核表现出异常的动力学行为。与传统的圆形涡流核的回旋运动不同,在扭曲的核中观察到晃荡运动,尽管微磁模拟表明顶面和底面的涡旋核仍然具有回旋运动。变形涡旋芯的独特动态运动可能是由于不对称的布洛赫壁限制了表面上的涡旋芯的运动[5]。这项研究还得到了NRF领先的外国研究所的招募计划(2012K1A4A3053565)的支持,以及科学,信息通信技术和未来计划部的DGIST研发计划(17-BT-02)的支持。能源(DE-AC02-05CH11231)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号