首页> 外文会议>IEEE International Magnetics Conference >Micromagnetic Studies of Laser-induced Magnetization Dynamics in FePt-C Films.
【24h】

Micromagnetic Studies of Laser-induced Magnetization Dynamics in FePt-C Films.

机译:FePt-C薄膜中激光诱导的磁化动力学的微磁学研究。

获取原文

摘要

Summary form only given. Laser-induced magnetization switching has been studied extensively for its applications in heat-assisted magnetic recording (HAMR) and all-optical switching (AOS), since Beaurepaire et al. found that magnetizations can respond to the femtosecond time scale laser pulse [1]. With the help of heat and assistance of external field or helicity-dependent magneto-optical effect, magnetizations switch in an ultrafast regime of picoseconds [2]. Recently, micromagnetic simulations based on LLB equation have been used to study the magnetization dynamics and switching in FePt fi lms [3, 4]. In this work, the hybrid Monte Carlo (HMC) micromagnetics developed by the authors [5, 6] will be utilized to analyze the laser -induced magnetization switching. In this work, we built a model of FePt-C granular film with Voronoi polycrystalline structure. Some magnetic and structural parameters are derived by experimental measurements [7]. The total simulated area is 32nmx32nmx8nm, divided into a regular mesh of 2.5nmx2.5nmx2nm micromagnetic cells and the number of crystalline grains is 48. At T = OK, in crystalline grains, the saturation iV4(0) is 1300 emu/cc, the exchange constant A 1 is 6.8x10 -7 erg,/cm and the anisotropy energy K(0) is 4.5x10 7 erg/cm 3 ; at disorder grain boundary, MAO) is 0.1MA, A * 2 is 0.2A% and 10(0)is 0.1K(0) [7]. In simulation of laser -induced magnetization dynamics, the temperature profile of the laser shooting process is vitally important. In LLB micromagnetics, two -temperature model (2TM) is commonly used to get the profile of the electron temperature, which is then introduced in LLB equation via the spin coupling parameter A. But some parameters in 2TM model are quite arbitrary. In HMC micromagnetics, we use the time-resolved magneto-optical Kerr effect (TR-MOKE) to get the spin temperature profile directly. The time resolved Kerr rotation, which is proportional to magnetization, is measured with an external magnetic field 2 T applied in the direction of initial magnetization to ensure that all magnetizations are saturated in one direction. The measurement and simulation results are shown in Fig. 1 and Fig. 2. The measured Kerr rotation signal is shown in Fig.1(a). In Fig. 1(a), in the process of -290fs laser shooting, the Kerr rotation decreases rapidly and then recovers slowly, which results from the rapid demagnetization and slower recovery of magnetization. Additionally, with higher laser power, the Kerr rotation decreases to a critical minimum point where the magnitude of magnetization gets closely to zero, so that we can get the scaling relationship between the Kerr rotation signal and the magnetization. We assume a spin temperature profile in Fig.1(b), and the HMC micromagnetics is performed with M(7) determined by the mean field Brillouin function based on the temperature profile no in Fig.1(b) [8]. The simulated averaged M(t) curves fi t well with the measurements in Fig.1(a), which in turn convince the correct choice of the spin temperature profile in Fig.1(b). So that HMC micromagnetics can be further utilized to study the laser-induced magnetization dynamics with various external magnetic fields or circularly polarized light.
机译:摘要表格仅给出。由于BeaurePaire等,已经广泛地研究了激光诱导的磁化切换,以其在热辅助磁记录(HAMR)和全光开关(AOS)中的应用。发现磁化可以响应飞秒时间尺度激光脉冲[1]。在外部场或螺旋依赖性磁光效应的热量和辅助的帮助下,磁化切换在PICOSECONDS的超快状态[2]。最近,基于LLB方程的微磁性模拟已被用于研究磁化动力学和切换的缩放LMS [3,4]。在这项工作中,将利用作者[5,6]开发的混合蒙特卡罗(HMC)微磁,分析激光诱导的磁化切换。在这项工作中,我们建立了具有Voronoi多晶硅结构的Fept-C颗粒膜模型。通过实验测量来源的一些磁性和结构参数[7]。总模拟面积为32nmx32Nmx8nm,分为2.5nmx2.5nmx2nm微磁电池的常规网状物,结晶颗粒的数量为48.在T = OK中,在结晶晶粒中,饱和IV4(0)是1300 emu / cc, Exchange常数A 1为6.8x10 -7 erg,/ cm和各向异性能量K(0)为4.5x10 7 erg / cm 3;在晶粒边界下,MAO)为0.1mA,A * 2为0.2A%,10(0)是0.1K(0)[7]。在激光诱导的磁化动力学模拟中,激光拍摄过程的温度曲线是重要的。在LLB微磁学中,通常使用两个高温模型(2Tm)来获取电子温度的轮廓,然后通过自旋耦合参数A在LLB方程中引入。但是2TM模型中的一些参数非常任意。在HMC MicroMagnetics中,我们使用时间分辨的磁光kerr效果(TR-moke)直接获得旋转温度曲线。用沿初始磁化方向上施加的外部磁场2t测量与磁化成比例的时间分辨的卡尔旋转,以确保所有磁化在一个方向上饱和。测量和仿真结果如图2所示。参照图1和图2.测量的KERR旋转信号如图1(a)所示。在图1中。如图1(a)所示,在-290fs激光拍摄的过程中,克尔旋转迅速减小,然后缓慢恢复,从而由快速的退磁和磁化较慢的恢复。另外,具有更高的激光功率,克尔旋转减小到磁化大小紧密归零的临界最小点,从而可以获得卡尔旋转信号和磁化之间的缩放关系。我们假设图1(b)中的旋转温度曲线,HMC微量磁性通过基于图1(b)中的温度曲线否定的平均曲线型Frillouin函数测定的M(7)进行。模拟平均M(T)与图1(a)中的测量结果均匀,这反过来表示正确选择图1(b)中的旋转温度分布。因此,可以进一步利用HMC微磁学,以研究激光引起的磁化动态,包括各种外部磁场或圆偏振光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号