首页> 外文会议>IEEE International Magnetics Conference >The effect of antisite disorder on magnetic and magnetocaloric properties of Ni-Co-Mn-In alloys: ab initio and Monte Carlo studies
【24h】

The effect of antisite disorder on magnetic and magnetocaloric properties of Ni-Co-Mn-In alloys: ab initio and Monte Carlo studies

机译:反位错对Ni-Co-Mn-In合金的磁热磁性能的影响:从头算和蒙特卡洛研究

获取原文

摘要

Nowadays, the Ni-Co-Mn-In Heusler alloys have drawn a much attention due to a series of functional properties such as the shape memory effect, giant magnetoresistance and magnetocaloric effects etc., which are promising for future technologies [1]-[3]. Usually, the most of unique properties are associated with the martensitic transformation between the martensite with complex magnetic order and the austenite with ferromagnetic order. Moreover, there are strong competing magnetic interactions in the vicinity of magnetostructural phase transition, which are responsible for the change in magnetization. Evidently, the manipulation of magnetic interactions in both martensite and austenite leads to change the magnitude of the magnetization drop and to achieve the better magnetocaloric properties across the martensitic transformation. The present theoretical study is addressed the question of effect of competing magnetic interactions on magnetic and magnetocaloric properties of Ni-Co-Mn-In alloys through the addition of structural defects. Evidently, samples prepared experimentally without an additional annealing can contain many impurities and defects. Opposite, the influence of additional annealing can result to a highly ordered structure with minimum defect concentration. In this connection for compositions without additional annealing, we focused attention on the formation of structural (antisite) disorder between In and Mn atoms on the corresponding In and Mn sublattices with concentration y which can be described by Ni2 Mn1+x In1-x = Ni2Mn1-ySnyMnx+y In1-x-y, where x is the Mn excess concentration and y is the degree of antisite disorder) [4]. While for the samples upon additional annealing, the ordered structure (without defects, y = 0 is proposed. Our methodology consists of ab initio calculations and Monte Carlo (MC) simulations based on the Potts-Blume-Emery-Griffiths model allowing to simulate austenite-martensite transformation as well as magnetic and magnetocaloric properties [5]-[7]. Two subsequent steps were used in our calculations. Firstly, we calculated the exchange coupling constants (Jij) using the SPR-KKR package [8] within the general gradient approximation in the form of Perdew-Burke-Ernzerhof. The chemical and structural disorders were simulated in the coherent potential approximation. The Jij calculations were done for cubic austenite (c/a = 1) and tetragonal martensite (c/a = 1.21) of Ni43 Co7 Mn37+y In13-y. Here, y takes values as follows: 1.5, 3.25, and 6.5. We note that the equilibrium lattice parameters for austenite and martensite were taken from our previous calculations (See Ref. [7]), and we supposed that lattice parameters change no with increasing degree of anisate disorder (y). Secondly, using the calculated exchange constants as a function of distance between interacting atoms, the MC simulations were performed. The model lattice that contains a real unit cell of Heusler alloy includes 3925 atoms with periodic boundary conditions. The configurations of excess Mn atoms (x + y) at the In sublattice and In atoms (y) at the Mn sublattice are chosen randomly and the total number of Mn and In atoms are fixed by a nominal composition Ni43 Co7 Mn37+y In13-y(y = 1.5, 3.25, and 6.5). The MC simulations were performed using the Metropolis algorithm and 500 000 MC steps. Note that all model parameters expect the magnetic moments and Jij constants were fixed and taken from [7]. Let us discuss the effect of additional annealing in the framework of theoretical approach assuming the presence of antisite disorder between In and Mn sublattice in Ni43 Co7 Mn37 In13 alloy. In Fig. 1a we present calculated nearest exchange coupling constants for austenite of Ni43 Co7 Mn37+y In13-y as a function of antisite defect concentration. As can be seen that all interactions with Mn1 (Mn2) atoms decrease (increase) with increasing y, respectively. Here Mn1(2) atoms denote Mn atoms located at Mn (In) sublattice, respectively. This observation is associated with the fact that the number of Mn1 atoms becomes smaller with an increase of antisite disorder. MC simulations of thermomagnetization curves for Ni43 Co7 Mn37+y In13-y. (y = 0 and 1.5) in magnetic field of 2 T under the heating and cooling protocols are shown in Fig. 1b. The inset contains the M(T) curves for Ni43 Co7 Mn37+y In13-y under heating. Thermal hysteresis between M(T) curves around the magnetostructural phase transition for the heating and cooling processes is clearly seen. Moreover, both the magnetization and Curie temperature of austenite are found to decrease compared to the ordered case (y = 0) with increasing degree of structural disorder. Generally, theoretical magnetization trend as a function of antisite disorder is provided by the recent experiments for both ordered and disordered Ni50 Mn34.5 In15.5 alloys [9], [10]. In the framework of theoretical approach involving first-principles and Monte Carlo methods, a set of magnetization curves for the studied system are calculated. It is shown that the account of structural disorder (anti-site defects) results to decrease the magnetization and magnetocaloric properties around the magnetostructural transformation.
机译:如今,Ni-Co-Mn-In Heusler合金由于形状记忆效应,巨大的磁阻和磁热效应等一系列功能特性而备受关注,这对未来的技术[1]-[ 3]。通常,大多数独特的性质与具有复杂磁序的马氏体和具有铁磁序的奥氏体之间的马氏体相变有关。此外,在磁结构相变附近存在强烈的竞争性磁相互作用,这是磁化强度变化的原因。显然,对马氏体和奥氏体中的磁性相互作用的操纵会导致磁化强度下降的幅度发生变化,并在整个马氏体相变中获得更好的磁热特性。本理论研究通过添加结构缺陷解决了竞争性磁相互作用对Ni-Co-Mn-In合金的磁热磁性能的影响的问题。显然,在不进行额外退火的情况下通过实验制备的样品可能会包含许多杂质和缺陷。相反,附加退火的影响可能导致具有最小缺陷集中的高度有序的结构。在这种情况下,对于没有额外退火的成分,我们集中注意在相应的In和Mn子晶格上In和Mn原子之间的结构(反位)无序形成,其浓度y可以用Ni来描述。 2 1 + x 1-x =镍 2 1-y y x + y 1-x-y ,其中x是Mn的过量浓度,y是抗位点紊乱的程度)[4]。对于额外退火的样品,提出了有序结构(无缺陷,y = 0)。我们的方法包括从头算和基于Potts-Blume-Emery-Griffiths模型的蒙特卡洛(MC)模拟,可模拟奥氏体-马氏体转变以及磁热和磁热性质[5]-[7]。在计算中使用了两个后续步骤。首先,我们计算了交换耦合常数(J ij )在Perdew-Burke-Ernzerhof形式的一般梯度近似中使用SPR-KKR软件包[8]。用相干势近似法模拟化学和结构失常。对Ni的立方奥氏体(c / a = 1)和四方马氏体(c / a = 1.21)进行了Jij计算 43 有限公司 7 37 + y 13-y 。此处,y取值如下:1.5、3.25和6.5。我们注意到,奥氏体和马氏体的平衡晶格参数取自我们先前的计算(参见参考文献[7]),并且我们假设晶格参数不随茴香酸度(y)的增加而变化。其次,使用计算出的交换常数作为相互作用原子之间距离的函数,进行了MC模拟。包含Heusler合金的实际晶胞的模型晶格包含3925个具有周期性边界条件的原子。随机选择In子晶格上的多余Mn原子(x + y)和Mn子晶格上的In原子(y)的构型,并通过标称成分Ni固定Mn和In原子的总数 43 有限公司 7 37 + y 13-y (y = 1.5,3.25和6.5)。使用Metropolis算法和500 000 MC步骤执行MC模拟。请注意,所有模型参数均预期磁矩和J ij 常数是固定的,取自[7]。让我们在理论方法的框架内讨论额外退火的效果,假设在Ni中In和Mn亚晶格之间存在反位错 43 有限公司 7 37 13 合金。在图1a中,我们给出了镍奥氏体的最近计算交换耦合常数。 43 有限公司 7 37 + y 13-y 作为反位缺陷浓度的函数。可以看出,所有与Mn的相互作用 1 (锰 2 )原子分别随着y的增加而减少(增加)。锰 1(2) 原子分别表示位于Mn(In)亚晶格上的Mn原子。该观察结果与以下事实有关:锰的数量 1 随着反位错的增加,原子变得更小。 Ni热磁化曲线的MC模拟 43 有限公司 7 37 + y 13-y 。在加热和冷却方案下,在2 T的磁场中(y = 0和1.5)如图1b所示。插图包含Ni的M(T)曲线 43 有限公司 7 37 + y 13-y 在加热下。可以清楚地看到加热和冷却过程的磁结构相变周围的M(T)曲线之间的热滞。此外,发现奥氏体的磁化强度和居里温度均比有序情况(y = 0)随结构无序度的增加而降低。通常,最近的有序和无序镍实验都提供了理论磁化趋势与反位错的关系 50 34.5 15.5 合金[9],[10]。在涉及第一性原理和蒙特卡洛方法的理论方法的框架内,计算了所研究系统的一组磁化曲线。结果表明,结构紊乱(反位缺陷)的产生导致磁结构转变周围的磁化和磁热特性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号