首页> 外文会议>IEEE International Magnetics Conference >Numerical Modeling of Magnetic Characteristics of Ferrite Core Taking Account of Both Eddy Current and Displacement Current.
【24h】

Numerical Modeling of Magnetic Characteristics of Ferrite Core Taking Account of Both Eddy Current and Displacement Current.

机译:同时考虑涡流和位移电流的铁氧体磁芯磁特性的数值模拟。

获取原文

摘要

Summary form only given. Ferrite cores are widely used in transformers and inductors, etc. for high frequency electronic devices because of high magnetic permeability and low conductivity. In the magnetic field analyses of such magnetic devices using a ferrite core, the frequency-domain analysis is often carried out using measured effective complex permeability under different frequencies. However, the harmonics caused by the magnetic nonlinearity of the ferrite core cannot be evaluated by using the frequency-domain analysis. To carry out the time-domain analysis of ferrite core taking account of the nonlinearity of the core, the modeling method of the effective complex permeability characteristics, which decreases in high frequency region due to dimensional resonance, should be established. In this paper, a simple finite element magnetic field analysis model taking account of eddy current and displacement current is proposed. The suitable conductivity and permittivity which can realize the effective complex permeability is investigated by using the catalogue data of a toroidal MnZn ferrite core. 2. Analysis Model and Method In this paper, our investigation is carried out using the data in the catalogne [2] of a toroidal MnZn ferrite core (TDK/EPCOS: T37). In [2], the real part and imaginary part of complex relative permeability with different frequency, measured using the toroidal core (outer radius: 16 mm, inner ra dius 9.6 mm, height: 6.3mm), and its conductivity cy =5 S/m are shown. The frequency characteristics of the complex permeability in the catalogne are tried to be represented by using the magnetic fi eld analysis. The ac linear steady state axisymmetric magnetic fi eld analysis taking account of eddy current and displacement current is carried out using the A method (A: magnetic vector potential) with the first order square edge finite element method and the phasor method. The fundamental equation is shown as follows: roftvrotA)=-jwca+co 2 wi where v is reluctivity and w is angular frequency. The superscript (.) denotes the complex variable. The first term in the right-hand side is the eddy current and the second term is the displacement current. The permeability 11, 0 of ferrite core is set to be 6100 by referring at 10 kHz because which is generated by hysteresis phenomena and eddy current effect, is relatively small and it can be neglected at 10 kHz. The original conductivity 0 0 is set to be 5 S/m following the catalogue [2]. The original relative permittivity e B0 is set to be 300 which is a typical value of MnZn ferrite core. The conductivity cy and relative permittivity e B are adjusted to realize the frequency characteristic of the effective complex permeability. 3. Results and Discussion First, the frequency characteristics of the complex effective permeability and calculated using the original conductivity 0 0 and relative permittivity e B0 are compared with those in catalogne data. The tendencies of the calculated permeability are similar with the catalogne data. Namely, both the real and calculated do not change in lower frequency region and they decrease in higher frequency region. Moreover, both the real and calculated increase in lower frequency region and they decrease in higher frequency region. However, the peak positions are shifted and the gradients are different with each other. Therefore, to realize the real frequency characteristics, the conductivity and relative permittivity should be changed. The frequency characteristics of the complex effective permeability and calculated using the modified conductivity cy = 4 , and permittivity e B = 400 E, 0 are compared with those in catalogne data. The calculated complex permeability has relatively large error in the low frequency region. However, the frequency characteristics of the complex permeability in catalogne data can be represented roughly overall by changing both the conductivity and permittivity. As basic investigation, only linear ac steady state magnetic field analysis of a simple model is carried out in this paper. However, the time domain analysis taking account of nonlinear magnetic characteristics for more actual model can be carried out using the suitable conductivity (i.e. σ = 4σ) and permittivity (i.e. e B = 400 e so ) obtained from the simple method proposed in this paper.
机译:仅提供摘要表格。铁氧体磁芯由于具有高的磁导率和低的电导率而被广泛用于高频电子设备的变压器和电感器等中。在使用铁氧体磁心的这种磁性器件的磁场分析中,频域分析通常是使用在不同频率下测得的有效复磁导率来进行的。但是,不能通过频域分析来评估由铁氧体磁芯的磁性非线性引起的谐波。为了在考虑铁心的非线性的情况下进行铁氧体磁心的时域分析,应建立有效复磁导率特性的建模方法,该方法会因尺寸共振而在高频区域减小。本文提出了一种考虑涡流和位移电流的简单有限元磁场分析模型。利用环形MnZn铁氧体磁芯的目录数据,研究了可以实现有效复磁导率的合适的电导率和介电常数。 2.分析模型和方法本文使用环形MnZn铁氧体磁心(TDK / EPCOS:T37)目录[2]中的数据进行研究。在[2]中,使用环形磁芯(外半径:16 mm,内半径9.6 mm,高度:6.3mm)测量的不同频率的相对相对磁导率的实部和虚部,其电导率cy = 5 S / m显示。试着通过磁场分析来表示目录中复磁导率的频率特性。考虑到涡电流和位移电流的交流线性稳态轴对称磁场的分析,是使用A方法(A:磁矢量势),一阶方边有限元法和相量法进行的。基本公式如下所示:roftvrotA)=-jwca + co 2 wi其中,v是磁阻,w是角频率。上标(。)表示复杂变量。右边的第一项是涡电流,第二项是位移电流。铁氧体磁心的磁导率11、0通过参考10 kHz设置为6100,因为它是由磁滞现象和涡流效应产生的,相对较小,在10 kHz时可以忽略不计。根据目录[2],原始电导率0 0设置为5 S / m。原始相对介电常数e B0设置为300,这是MnZn铁氧体磁芯的典型值。调节电导率cy和相对介电常数e B以实现有效复磁导率的频率特性。 3.结果与讨论首先,将复数有效磁导率的频率特性和使用原始电导率0 0和相对介电常数e B0计算出的频率特性与目录数据进行比较。计算出的渗透率的趋势与目录数据相似。即,实数和计算值在低频区域均不改变,而在高频区域中则降低。此外,实际和计算值在低频区域均增加,而在高频区域则减少。但是,峰位置偏移并且梯度彼此不同。因此,为了实现真实的频率特性,应改变电导率和相对介电常数。使用修正电导率cy = 4和介电常数e B = 400 E,0计算出的复数有效磁导率的频率特性与目录数据中的频率特性进行了比较。计算出的复磁导率在低频区域具有相对较大的误差。但是,通过改变电导率和介电常数,可以大致整体表示目录数据中复磁导率的频率特性。作为基础研究,本文仅对简单模型的线性交流稳态磁场进行分析。但是,可以使用通过本文提出的简单方法获得的合适的电导率(即σ=4σ)和介电常数(即e B = 400 e so)来进行针对更实际模型的考虑非线性磁特性的时域分析。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号