首页> 外文会议>IEEE International Magnetics Conference >Magnetic Skyrmion Dynamics in Wedge-shaped Nanotrack and Its Potential Applications.
【24h】

Magnetic Skyrmion Dynamics in Wedge-shaped Nanotrack and Its Potential Applications.

机译:楔形纳米轨道中的磁Skyrmion动力学及其潜在应用。

获取原文

摘要

Magnetic skyrmions are swirling topological configuration [1], mostly induced by chiral exchange interactions between atomic spins in non-centrosymmetric magnetic bulks or in thin films with broken inversion symmetry. With the rapid advances made in this field [2-3], the development of skyrmion-based spintronics holds promise for future applications owing to the topological nature, nanoscale size, and ultralow current density for motion. Furthermore, the standby energy consumption and heat generation during the processing and transportation of information can be efficiently reduced thanks to the nonvolatility. In this abstract, we present firstly our investigations on skyrmion dynamics in terms of size, velocity, energy, stability in a wedge-shaped nanotrack via micromagnetic and theoretical studies [4]. We find some interesting results compared to previous research. For example, the size of a skyrmion decreases as the nanotrack width decreases because of the compression by the nanotrack edge (see Fig. 1a), thus this property can be harnessed to adjust the dimension of skyrmions to acheive ultra-dense storage in racetrack memory [5]. Inspired by the findings in wedge-shaped nanotracks, we draw a conclusion about the tradeoff between the nanotrack width (storage density) and the skyrmion motion velocity (data access speed) by further analyzing the skyrmion dynamics in parallel nanotracks (see Fig. 1b). Our results may provide guidelines in designing skyrmion racetrack memory and other related skyrmionic applications. We also model a novel compact neuron device based on this wedge-shaped nanotrack. Under the coaction of the exciting current pulse and the repulsive force exerted by the edge of the nanotrack, the dynamic behavior of the proposed skyrmionic artificial neuron device corresponds to the leaky-integrate-fire (LIF) spiking function of a biological neuron (see Fig. 2). We believe that our study makes a significant step because such a compact artificial neuron can enable energy-efficient and high-density implementation of neuromorphic computing hardware [6].
机译:磁性臭氧是旋转拓扑结构[1],主要由原子旋转之间的手性交换相互作用在非亚聚对称磁块中或薄膜中具有破碎的反转对称性。随着该领域的快速进步[2-3],斯基昔翁的特隆龙的发展占据了拓扑性质,纳米级尺寸和超级运动的未来应用的承诺。此外,由于非易失性,可以有效地减少处理和运输过程中的待机能量消耗和发热。在这个摘要中,我们首先通过微磁性和理论研究在楔形纳米架中的尺寸,速度,能量,稳定性方面对Skyrmion Dynamics进行调查[4]。与以前的研究相比,我们发现一些有趣的结果。例如,由于纳米架边缘的压缩(参见图1A)压缩而减小,因此斯基序的尺寸减小(参见图1A),因此可以利用该特性以调整阶段的尺寸以在跑道存储器中实现超密集的存储[5]。灵感来自楔形纳米架中的发现,我们通过进一步分析并联纳米架中的斯基云动力学(参见图1B)来得出关于纳米架宽度(存储密度)和Skyrmion运动速度(数据访问速度)之间的折衷的结论(参见图1B) 。我们的结果可以提供设计智能赛道内存和其他相关的Skyrmionic应用程序的指导方针。我们还基于该楔形纳米架模拟了一种新型紧凑型神经元装置。在激励电流脉冲的同时和由纳米架边缘施加的排斥力,所提出的氧化型人工神经元装置的动态行为对应于生物神经元的泄漏 - 整合 - 火(LiF)尖刺功能(见图。2)。我们认为,我们的研究表现了重要的一步,因为这种紧凑的人工神经元可以实现神经形态计算硬件的节能和高密度的实施[6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号