首页> 外文会议>IEEE International Solid- State Circuits Conference >A 23GHz low-phase-noise digital bang-bang PLL for fast triangular and saw-tooth chirp modulation
【24h】

A 23GHz low-phase-noise digital bang-bang PLL for fast triangular and saw-tooth chirp modulation

机译:一个23GHz的低相位噪声数字bang-bang PLL,用于快速三角波和锯齿波chi调制

获取原文

摘要

Frequency-modulated continuous-wave (FMCW) radars with high resolution require the generation of low-phase-noise, low-spurs, and highly linear chirp signals with large peak-to-peak value (chirp bandwidth) and a short period of the modulation signal [1]. In radar systems, the spot phase noise of the chirp generator is converted to the intermediate frequency of the receiver making it difficult to detect two close targets, while spurs cause the detection of false targets. For those reasons, medium-range radar applications in the 77-to-81GHz band typically specify spot phase noise lower than -90dBc/Hz at 1MHz offset and spur level below -50dBc. Unlike triangular chirps, saw-tooth chirps allow for a reduced dead time for range detection. However, any practical modulator needs a finite time (idle time) to make a large frequency jump at the end of the saw-tooth, and this limits the duty cycle of the saw-tooth. For instance, a fast saw-tooth chirp with 200kHz rate and 95% duty cycle leaves the idle time of only 250ns. Fractional-N PLLs can be used as chirp modulators. Unfortunately, low phase noise and spur levels require a narrow PLL bandwidth, while short idle time demands for a wide one. The two-point injection of the modulation signal, both from the modulus control of the divider and the tuning input of the voltage-controlled oscillator (VCO), is a known method to simultaneously achieve a narrow PLL bandwidth and fast modulation. However, even in that scheme, a frequency modulation error is mainly limited by gain mismatch between the two injection paths and by the linearity of the VCO [2]. In this work, a 20-to-24GHz digital bang-bang PLL, which uses the two-point modulation scheme to generate triangular and saw-tooth chirp signals, is presented. Unlike previous works [1-4], this architecture is able to generate fast saw-tooth chirps with the slope up to 173MHz/js, the idle time below 200ns, and the rms frequency error of better than 0.06%. The gain mismatch between the two modulation paths are automatically calibrated by a digital algorithm [5], and the input of the digitally controlled oscillator (DCO) is pre-distorted via an automatic background correction scheme, which compensates for the DCO nonlinearity.
机译:具有高分辨率的调频连续波(FMCW)雷达要求生成具有大的峰峰值(线性调频带宽)和短周期噪声的低相位噪声,低杂散和高度线性的线性调频信号。调制信号[1]。在雷达系统中,线性调频脉冲发生器的点相位噪声会转换为接收器的中频,从而很难检测到两个近距离目标,而杂散会导致错误目标的检测。由于这些原因,在77至81GHz频段的中程雷达应用通常会指定点相位噪声在1MHz偏移下低于-90dBc / Hz且杂散电平在-50dBc以下。与三角chi不同,锯齿chi可以减少死区时间,以进行距离检测。但是,任何实际的调制器都需要有限的时间(空闲时间)才能在锯齿的末端产生较大的频率跳变,这限制了锯齿的占空比。例如,一个具有200kHz频率和95%占空比的快速锯齿chi,仅留下250ns的空闲时间。小数N分频PLL可用作线性调频器。不幸的是,低相位噪声和杂散电平需要窄的PLL带宽,而短的空闲时间则需要宽的PLL带宽。来自分频器的模量控制和压控振荡器(VCO)的调谐输入的调制信号的两点注入是一种同时实现窄PLL带宽和快速调制的已知方法。然而,即使在该方案中,频率调制误差也主要受两个注入路径之间的增益失配和VCO线性度的限制[2]。在这项工作中,提出了一种20至24GHz的数字Bang-bang PLL,该PLL使用两点调制方案来生成三角形和锯齿状线性调频信号。与以前的工作[1-4]不同,该架构能够生成斜率高达173MHz / js,空闲时间低于200ns且均方根频率误差优于0.06%的快速锯齿chi。两条调制路径之间的增益失配由数字算法自动校准[5],而数控振荡器(DCO)的输入则通过自动背景校正方案进行了预失真,从而补偿了DCO的非线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号