首页> 外文会议>European Frequency and Time Forum >Towards a quantum-enhanced atomic clock on a chip
【24h】

Towards a quantum-enhanced atomic clock on a chip

机译:迈向芯片上的量子增强原子钟

获取原文

摘要

The Dick effect and quantum projection noise (QPN) are among the most stringent limiting factors for state-of-the-art atomic frequency standards, including both primary and secondary standards, as well as compact clocks. A possible solution to the Dick effect relies on Quantum Non-Destructive (QND) detection, which allows multiple interrogations with weak measurements on the same atomic ensemble. Furthermore, spin-squeezed states, which can also be prepared by such QND detection, have the potential to enable clock measurements beyond the standard quantum limit, by employing quantum correlations. Our experimental platform is a Trapped-Atom Clock on a Chip (TACC) that uses ultracold Rb atoms, having demonstrated metrological stability. In the second generation of this experiment, we target quantum enhancement by using QND detection and spin-squeezed ultra-cold atoms generated by cavity QED interactions. To reach this goal, we have integrated two fiber Fabry-Perot cavities on the clock chip, realizing a platform for cavity QED in the strong coupling and weak coupling regimes. With this new device we aim to explore spin squeezing at a metrologically relevant level of stability. Here, we report on the current status and perspectives of this project.
机译:迪克效应和量子投影噪声(QPN)是最新的原子频率标准(包括初级和次级标准以及紧凑型时钟)中最严格的限制因素。迪克效应的一种可能解决方案依赖于量子无损(QND)检测,该检测可以在同一原子系综上以弱测量进行多次询问。此外,也可以通过这种QND检测来准备的自旋压缩状态,通过采用量子相关性,具有实现超出标准量子极限的时钟测量的潜力。我们的实验平台是使用超冷Rb原子的陷波原子钟(TACC),已证明其计量稳定性。在该实验的第二代中,我们的目标是通过使用QND检测和由腔QED相互作用产生的自旋压缩超冷原子来实现量子增强。为了实现这一目标,我们在时钟芯片上集成了两个光纤Fabry-Perot腔,在强耦合和弱耦合机制下实现了腔QED的平台。借助这种新设备,我们旨在探索与计量相关的稳定性水平的自旋挤压。在这里,我们报告该项目的当前状态和观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号