首页> 外文会议>American Society for Composites technical conference;American Society for Composites >Multi-objective Optimization for Coupled Mechanics-dynamics Analyses of Composite Structures
【24h】

Multi-objective Optimization for Coupled Mechanics-dynamics Analyses of Composite Structures

机译:复合结构力学-动力耦合分析的多目标优化

获取原文

摘要

Fiber reinforced composites are increasingly used in advanced applications dueto advantageous qualities including high strength-to-weight ratio. The ability totailor composite structures to meet specific performance criteria is particularlydesirable. In practice designs must often balance multiple objectives withconflicting behavior. Objectives of this work were to optimize lamina orientationsof a three-ply carbon fiber reinforced composite structure for the coupled solidmechanics and dynamics considerations of minimizing max principal stress whilemaximizing fundamental frequency. Two approaches were investigated: Pareto setoptimization (PSO), and multi-objective genetic algorithm (MOGA). In PSO, asingle objective function is constructed as a weighted sum of multiple objectiveterms. Multiple weighting sets are evaluated to determine a Pareto set of solutions.MOGA mimics evolutionary principles, where the best design points populatesubsequent generations. Instead of weight factors, MOGA uses a domination countthat ranks population members. Results showed both methods converged tosolutions along the same Pareto front. The PSO method calculated fewer functionevaluations, but provided many fewer final data points. At a certain threshold,MOGA provides more solutions with fewer calculations. The PSO method requiresmore user intervention which may introduce bias, but can largely be run in parallel.In contrast, MOGA generation are evaluated in series. The Pareto front showed thetrend of increasing frequency with increasing stress. At the low stress andfrequency extreme, the stacking sequence tended toward (45°/90°/45°) with maxprincipal stress located in the inner ply in the hoop direction. At high stress andfrequency, the stacking sequences (90°/*/90°) indicated that the middle plyorientation was less significant. A mesh convergence study and dynamic validationexperiments gave confidence to the computational model. Future work will includean uncertainty quantification about selected solutions. The final selected solutionwill be fabricated and experimental validation testing will be conducted.
机译:由于纤维增强复合材料越来越多地用于先进应用中 具有有利的质量,包括高强度重量比。的能力 量身定制复合结构以满足特定的性能标准尤其 理想的。在实践中,设计必须经常平衡多个目标与 冲突的行为。这项工作的目的是优化叶片取向 的三层碳纤维增强复合材料结构 最小化最大主应力的力学和动力学考虑 最大化基频。研究了两种方法:帕累托集 优化(PSO)和多目标遗传算法(MOGA)。在PSO中, 将单个目标函数构造为多个目标的加权和 条款。评估多个加权集以确定解的帕累托集。 MOGA模仿了进化的原理,其中包含了最佳的设计要点 后代。 MOGA代替了权重因素,使用了支配数 对人口成员进行排名。结果表明两种方法都收敛于 相同的Pareto前沿的解决方案。 PSO方法计算的功能较少 评估,但提供的最终数据少得多。在一定的门槛下, MOGA用更少的计算量提供了更多的解决方案。 PSO方法要求 更多的用户干预,可能会带来偏差,但在很大程度上可以并行运行。 相比之下,MOGA生成将进行串联评估。帕累托阵线显示 应力增加而频率增加的趋势。在低压力下 在极端频率下,堆叠顺序趋向于(45°/ 90°/ 45°),最大 主应力位于环向内层中。在高压力下 频率,堆叠顺序(90°/ * / 90°)表示中间层 方向不太重要。网格收敛研究和动态验证 实验使计算模型充满信心。未来的工作将包括 有关选定解决方案的不确定性量化。最终选择的解决方案 将被制作出来,并将进行实验验证测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号