首页> 外文会议>Corrosion conference and expo >Interfacial and Corrosion Characterization of Zinc Rich-Epoxy Primers with Carbon Nanotubes Exposed to Marine Bacteria
【24h】

Interfacial and Corrosion Characterization of Zinc Rich-Epoxy Primers with Carbon Nanotubes Exposed to Marine Bacteria

机译:碳纳米管暴露于海洋细菌的富环氧锌底漆的界面和腐蚀特性

获取原文

摘要

Nowadays, it is accepted that in aerobic conditions, marine electroactive biofilms induce faster oxygen reduction on active/passive alloys immersed in seawater. Besides, these alloys undergo a shift of open circuit potentials (OCP) towards noble direction after biofilm settlement, OCP can be shifted up to =350 mV vs. saturated calomel electrode (SCE). For steel structures, zinc rich epoxy coatings are an effective corrosion prevention and protection method in marine environment. Zinc rich coatings can protect the steel by two mechanisms: the first as a physical barrier or mass transfer effect and the second as cathodic protection effect by promoting electrochemical reactions within the coating. Recently, electrochemical studies reveals that the presence of CNT (Carbon Nanotubes) in zinc rich and multifunctional coatings can enhance the corrosion resistance properties by improving both protection mechanisms. In this work, a marine environment due to the presence of marine bacteria was exposed to three different zinc rich epoxy coated-steel samples with different CNT additions. The electrochemical activity was monitored by using OCP (open circuit potential) and EIS (electrochemical impedance spectroscopy). Surface analysis by scanning electronic microscopy (SEM) correlated the electrochemical behavior of zinc-rich epoxy coated samples at different exposure times. The results demonstrated the influence of CNT in biofilm formation and the barrier vs. the electrochemical effect mechanisms. Favorable conditions for long lasting settlement of biofilms were observed at Zn and Zn-1xCNT coating type. EIS showed the influence of CNT in the impedance response for different CNT content. The lowest impedance magnitude was obtained at the highest CNT content due to the promotion of more electrochemical activity within the coating.
机译:如今,人们普遍认为,在有氧条件下,海洋电活性生物膜会导致浸泡在海水中的活性/钝态合金中氧的还原速度更快。此外,这些合金在生物膜沉积后经历开路电势(OCP)向高贵方向的移动,相对于饱和甘汞电极(SCE),OCP可以移动至= 350 mV。对于钢结构,富锌环氧涂料是在海洋环境中有效的防腐蚀和防护方法。富锌涂层可以通过两种机制保护钢:第一种作为物理屏障或传质效应,第二种通过促进涂层内的电化学反应作为阴极保护效应。最近,电化学研究表明,富锌和多功能涂层中CNT(碳纳米管)的存在可以通过改善两种保护机制来增强耐腐蚀性。在这项工作中,由于海洋细菌的存在而导致的海洋环境暴露于三种不同的含锌量不同的富锌环氧涂层钢样品中。通过使用OCP(开路电势)和EIS(电化学阻抗谱)监测电化学活性。通过扫描电子显微镜(SEM)进行的表面分析将富锌环氧涂层样品在不同暴露时间下的电化学行为相关联。结果证明了碳纳米管对生物膜形成和屏障的影响与电化学作用机理的关系。在Zn和Zn-1xCNT涂层类型下,观察到生物膜持久沉降的有利条件。 EIS显示了CNT在不同CNT含量下的阻抗响应中的影响。由于促进了涂层内更多的电化学活性,因此在最高的CNT含量下获得了最低的阻抗值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号