首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >INTEGRATION OF CFD TO DESIGN EXPERIMENTS FOR ENHANCED SPATIAL AND TEMPORAL DISCRETIZATION
【24h】

INTEGRATION OF CFD TO DESIGN EXPERIMENTS FOR ENHANCED SPATIAL AND TEMPORAL DISCRETIZATION

机译:将CFD集成到增强时空离散的设计实验中

获取原文

摘要

The availability of high fidelity Computational Fluid Dynamics (CFD) suitable for turbomachinery design offers a powerful tool to define an effective experimental measurement campaign. This paper describes approaches to integrate Reynolds-Averaged Navier-Stokes simulations into experiment design. CFD simulations are used to a priori estimate the measurement errors induced by the finite spatial sampling and inherent limited sensor bandwidth for space-resolved and time-resolved turbine aerothermal measurements. The CFD predictions are employed to optimize the probe placement and traversing while minimizing the measurement errors associated with the finite spatial sampling. Additionally, time-resolved CFD traces serve to quantify the measurement errors as a function of the measurement chain bandwidth. This approach was applied to a recent turbine test program, focused on the aerothermal characterization of the turbine over-tip casing endwall and downstream flow field. Based on the 3D simulations of the different rotor geometries, the discrete radial positions of the aerothermal probes located downstream of the stage were optimized to minimize the uncertainty on the individual aerodynamic quantities, as well as to mitigate the propagated uncertainty on the turbine loss coefficient. Furthermore, the effect of the implicit time-averaging of all sensors, due to the limited frequency response, was quantified. This manuscript illustrates the benefits of CFD in the design and planning of a turbine experimental campaign. Based on the proposed procedure, the experimentalist can find the best compromise between measurement precision and instrumentation costs by establishing the minimum sensor performance requirements to obtain the target accuracies.
机译:适用于涡轮机械设计的高保真计算流体动力学(CFD)的提供为定义有效的实验测量活动提供了强大的工具。本文介绍了将雷诺平均Navier-Stokes模拟集成到实验设计中的方法。 CFD仿真用于对空间分辨和时间分辨的涡轮机空气热测量的有限空间采样和固有的有限传感器带宽所引起的测量误差进行先验估计。 CFD预测可用于优化探头的放置和移动,同时最大程度地减少与有限空间采样相关的测量误差。此外,时间分辨的CFD迹线还可以根据测量链带宽来量化测量误差。该方法已应用于最近的涡轮机测试程序,该程序专注于涡轮机顶部壳体端壁和下游流场的空气热特性。基于不同转子几何形状的3D模拟,优化了位于平台下游的空气热探针的离散径向位置,以最大程度地减少单个空气动力量的不确定性,并减轻涡轮损耗系数的传播不确定性。此外,由于有限的频率响应,对所有传感器的隐式时间平均的效果进行了量化。该手稿说明了CFD在涡轮机实验活动的设计和规划中的好处。根据提出的程序,实验者可以通过建立最低的传感器性能要求以获得目标精度,来找到测量精度和仪器成本之间的最佳折衷方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号