首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >Further Development of Modified Theta Project Creep Models with Life Fraction Hardening
【24h】

Further Development of Modified Theta Project Creep Models with Life Fraction Hardening

机译:带有寿命分数硬化的改进的Theta Project蠕变模型的进一步开发

获取原文

摘要

In order to optimally design a hot section component for creep, the designer and turbine durability specialist must have confidence in their predictive tools and be able to gain design insight from these analytical tools. The modified theta projection (MTP) creep model was previously presented as an accurate means of describing creep behavior as a function of stress, temperature and time. The MTP was then implemented in an analytical model using a life fraction hardening (LFH) rule to calculate creep in the presence of time-varying stresses, and the results presented in a second paper. This paper presents improvements to the technique through the use of state variables in addition to the previously shown strain life fraction (ELF) and temperature margin (T_(Mar)). The need for performing multiple creep analyses is avoided by adding state variables to that track estimates of the effect of temperature changes on stress relaxation and life fraction, as well as an allowance for material variability and an inexact fit of material behavior. The results of creep tests, on a nickel blade alloy, with incrementally increasing or decreasing loads are presented to provide validation of the accuracy of the life fraction hardening rule. The use of MTP and LFH has now been expanded to steels. Incremental testing results are examined for a NiCrMoV rotor steel to further validate the technique. The effect of true stress on model accuracy is also presented. Now that an accurate creep model and hardening rule have been implemented, expansion of the techniques to provides more useable design information and allows us to improve the structural integrity of turbine blades, vanes and rotors.
机译:为了优化设计蠕变的热截面部件,设计人员和涡轮耐久性专家必须对他们的预测工具充满信心,并能够从这些分析工具中获得设计见解。修改过的theta投影(MTP)蠕变模型先前已作为一种将蠕变行为描述为应力,温度和时间的函数的精确方法进行了介绍。然后,使用寿命分数硬化(LFH)规则在分析模型中实施MTP,以计算存在时变应力时的蠕变,并将结果发表在第二篇论文中。本文介绍了通过使用状态变量以及先前显示的应变寿命分数(ELF)和温度裕度(T_(Mar))来改进该技术的方法。通过向温度变化对应力松弛和寿命分数的影响的跟踪估计中添加状态变量,以及对材料变化的余量和材料行为的不精确拟合,避免了执行多次蠕变分析的需要。提出了在镍叶片合金上,随着载荷的增加或减少而进行的蠕变测试的结果,以验证寿命分数强化规则的准确性。 MTP和LFH的用途现已扩展到钢。对NiCrMoV转子钢的增量测试结果进行了检查,以进一步验证该技术。还介绍了真实应力对模型精度的影响。现在已经实现了精确的蠕变模型和硬化规则,技术的扩展提供了更多可用的设计信息,并使我们能够改善涡轮机叶片,叶片和转子的结构完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号