首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >THE FABRICATION, HIGH HEAT FLUX TESTING, AND FAILURE ANALYSIS OF THERMAL BARRIER COATINGS FOR POWER GENERATION GAS TURBINES
【24h】

THE FABRICATION, HIGH HEAT FLUX TESTING, AND FAILURE ANALYSIS OF THERMAL BARRIER COATINGS FOR POWER GENERATION GAS TURBINES

机译:燃气轮机热障涂层的制备,高通量测试和失效分析

获取原文

摘要

Thermal barrier coatings (TBC) are used to protect the hot components of gas turbines engines to enhance thermal efficiency and component service life. The coating, based on yttria stabilized zirconia, is used in this study. In this paper high heat flux testing with a temperature gradient across the coating thickness of TBC coated coupons is presented. These buttons are subject to precisely-controlled laser heating on the top side and compressed air cooling on the bottom side. Analysis of the thermal conductivity change with respect to heating time and peak temperature, failure assessment, and metallurgical examination are also presented. Some important results of using this method of testing are: definition of the service time vs temperature relationship for TBC lifetime; improved durability of TBCs under severe environmental conditions; determination of effective steady-state sintering conductivity; identification of onset of coating cracking and delamination; adjustable peak temperature, automated and accelerated thermal cycling, etc. This leads to faster testing turn-around for TBC development. Two different types of heating modes can be employed: soak test and cycle test. In soak tests, coated coupons are subjected to steady laser heat flux for up to 12 nr. In cycle tests, the laser heat flux is on for one hour and then off to cool the coated coupons for three minutes. Coupon top surface temperatures from 1200 to 1528°C are maintained in various test cases. At the highest temperature test cases, delamination of TBC (cycle test) and surface crack (soak test) are observed. All key measurements (temperatures, laser power to coupon, compressed air flow rate, etc.) are recorded per second. The normalized thermal conductivity can be computed in real time or processed after the test. It is found that the normalized thermal conductivity increases in the first few hours or cycles of heating and it either reaches a near steady state value or decreases due to surface cracking or delamination in the later state of testing.
机译:隔热涂层(TBC)用于保护燃气轮机发动机的高温部件,以提高热效率和部件使用寿命。在这项研究中使用了基于氧化钇稳定的氧化锆的涂层。在本文中,提出了在整个TBC涂层试样厚度范围内具有温度梯度的高热通量测试。这些按钮在顶部受到精确控制的激光加热,在底部受到压缩空气冷却。还介绍了相对于加热时间和峰值温度的热导率变化分析,失效评估和冶金检查。使用这种测试方法的一些重要结果是:定义了TBC使用寿命的工作时间与温度的关系;在恶劣的环境条件下提高了TBC的耐久性;确定有效的稳态烧结电导率;识别涂层开裂和分层的开始;可调节的峰值温度,自动和加速的热循环等。这使得TBC开发的测试周转速度更快。可以采用两种不同类型的加热模式:均热测试和循环测试。在浸泡测试中,涂层试片要经受高达12 nr的稳定激光热通量。在循环测试中,激光热通量打开一小时,然后关闭以冷却涂层试样三分钟。在不同的测试案例中,优惠券的顶表面温度保持在1200至1528°C。在最高温度的测试案例中,观察到TBC分层(循环测试)和表面裂纹(均热测试)。每秒记录所有关键测量值(温度,到试样的激光功率,压缩空气流速等)。归一化的导热系数可以实时计算,也可以在测试后进行处理。发现归一化的热导率在加热的最初几个小时或加热周期中增加,并且由于在随后的测试状态下表面开裂或分层而达到接近稳态值或降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号