首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >FABRICATION AND CHARACTERIZATION OF ADDITIVE MANUFACTURED NICKEL-BASE ODS COATING LAYER FOR HIGH TEMPERATURE APPLICATION
【24h】

FABRICATION AND CHARACTERIZATION OF ADDITIVE MANUFACTURED NICKEL-BASE ODS COATING LAYER FOR HIGH TEMPERATURE APPLICATION

机译:高温应用的镍基ODS增材制造的表征

获取原文

摘要

Increasing turbine inlet temperature (TIT) is important for improving the efficiency of gas turbine engine. Elevated thermal load causes severe oxidation and corrosion for base alloy in turbine airfoils. To survive in this extreme high temperature and harsh oxidation environment, both outside protection like thermal barrier coatings (TBC) and inside air cooling have been applied to turbine blades. Significantly more protection can be achieved if the cooling channels are embedded near surface, constructed partially by the coating system and partially by the superalloy substrate. However, neither the ceramic coating layer nor the metallic bond coating layer in current TBC system can provide structural support to such internal cooling channels. Development of structural bond coating layers consequently becomes one of the key technologies to achieve this goal. Present study proposed a method to fabricate structural coating layers on top of turbine blades with the aid of additive manufacturing (AM) and oxide dispersion strengthened (ODS) nickel based alloy. ODS powder comprised of evenly distributed host composite particles (Ni, Al, Cr) with oxide coating layers (Y_2O_3) was subjected to a direct metal laser sintering (DMLS) process to fabricate a desirable structural coating layer above Nickel based superalloy substrates. Systematic experimental tests were carried out focusing on the interface adhesion, mechanical strength, microstructure and surface finish of the ODS coating layer. Based on characterization results from indentation tests and microscopy observations, an optimal coating quality was obtained under -250W laser power. The selected samples were then characterized under isothermal conditions of 1200 °C for 2000 hours. SEM observations and Energy-dispersive X-ray spectroscopy (EDX) analysis were conducted in different stages of the oxidation process. Results indicated a formation of Al_2O_3 scale on top of the ODS coating layer at early stage, which showed long term stability throughout the oxidation test. The formation of a stable alumina scale is acting as a protective layer to prevent oxygen penetrating the top surface. Spallation of part of nickel oxide and chromium oxide is observed but the thickness of oxide scale is almost no change. In addition, the observed adhesion between ODS coating layer and substrate was tight and stable throughout the entire oxidation test. Present study has provided strong proof that additive manufacturing has the capability to fabricate structural and protective coating layers for turbine airfoils.
机译:涡轮进口温度(TIT)的提高对于提高燃气涡轮发动机的效率很重要。较高的热负荷会导致涡轮机翼型中的基础合金严重氧化和腐蚀。为了在这种极端高温和苛刻的氧化环境中生存,涡轮叶片已采用了外部防护(例如热障涂层(TBC))和内部空气冷却。如果冷却通道嵌入表面附近,部分地由涂层系统和部分地由高温合金基体构成,则可以显着地获得更多的保护。然而,当前的TBC系统中的陶瓷涂层或金属结合涂层都不能为这种内部冷却通道提供结构支撑。因此,结构粘合涂层的开发成为实现该目标的关键技术之一。本研究提出了一种借助增材制造(AM)和氧化物弥散强化(ODS)镍基合金在涡轮叶片顶部制造结构涂层的方法。对由具有氧化物涂层(Y_2O_3)的均匀分布的主体复合颗粒(Ni,Al,Cr)组成的ODS粉末进行直接金属激光烧结(DMLS)工艺,以在镍基超合金基体上制造所需的结构涂层。进行了系统的实验测试,重点是ODS涂层的界面粘附力,机械强度,微观结构和表面光洁度。基于压痕测试和显微镜观察的表征结果,在-250W激光功率下获得了最佳的涂层质量。然后将选定的样品在1200°C的恒温条件下表征2000小时。在氧化过程的不同阶段进行了SEM观察和能量色散X射线光谱(EDX)分析。结果表明在早期阶段在ODS涂层的顶部上形成了Al_2O_3水垢,这表明了整个氧化测试的长期稳定性。稳定的氧化铝水垢的形成起保护层的作用,以防止氧气渗透到顶部表面。观察到部分氧化镍和氧化铬散裂,但是氧化皮的厚度几乎没有变化。此外,在整个氧化测试中,观察到的ODS涂层与基材之间的粘附力是紧密且稳定的。当前的研究提供了有力的证据,表明增材制造能够制造用于涡轮机翼的结构涂层和保护涂层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号