首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >DISTINGUISHING PRIMARY AND SECONDARY LOADS TO SUPPORT GAS TURBINE BLADES AND VANES DESIGN
【24h】

DISTINGUISHING PRIMARY AND SECONDARY LOADS TO SUPPORT GAS TURBINE BLADES AND VANES DESIGN

机译:区分主载荷和副载荷以支持燃气轮机叶片和叶片设计

获取原文

摘要

Creep mechanisms are present in heavy duty gas turbine blades and vanes due to the simultaneous presence of high temperature and high stresses. Therefore, the microstructural phenomena (dislocation movement and atomic diffusion) that occur and accumulate during service are able to convert part of the initial elastic field of strain into permanent creep strain. This also induces a global redistribution of stresses. The progressive accumulation of creep strain can, in some extreme cases, produce changes and damage in the material (gamma prime rafting, porosity) and can eventually lead to component failure. This work shows how the understanding of the nature of the load significantly affect the capability of creep strain to produce damage. In fact, it is shown how both primary (non-self-limiting) and secondary (self-limiting) loads are both capable to generate a significant amount of creep strain, but the microstructural damage is more easily generated by relentless primary loads, generated by external forces such as the rotor blade centrifugal force (or, in other components, external gas pressure, dead weight). In the case of turbine blades and vanes, due to the complexity of the component, it is challenging to quantitatively distinguish relentless primary from self-limiting secondary stresses or simply thermal from mechanical contributions. This work is aimed to provide the designer with tools to perform such distinction and support the interpretation of the creep calculations. The proposed methodologies are developed to improve the accuracy of the prediction of the creep damage in turbine blades and vanes, but they can also be used for other purposes (e.g. predict the hysteresis cycle shift, support the estimation of the plastic strain on the basis of an elastic FE calculation), as illustrated in the paper.
机译:由于同时存在高温和高应力,因此重型燃气轮机叶片和叶片中存在蠕变机构。因此,在使用过程中发生并积累的微观结构现象(位错运动和原子扩散)能够将应变的初始弹性场的一部分转换为永久蠕变应变。这也会引起压力的全局重新分布。在某些极端情况下,蠕变应变的逐渐积累会在材料上产生变化和损坏(伽马初始漂流,孔隙率),并最终导致零件损坏。这项工作表明,对载荷性质的理解如何显着影响蠕变应变产生破坏的能力。实际上,它显示了初级(非自限制)和次级(自限制)载荷都能够产生大量的蠕变应变,但是通过无情的初级载荷产生的微结构破坏更容易产生。通过诸如转子叶片离心力之类的外力(或在其他组件中,外部气压,自重)。在涡轮叶片和叶片的情况下,由于组件的复杂性,要​​定量区分无休止的主应力和自限制的次级应力,或者简单地将热与机械贡献区分开来,这是一个挑战。这项工作旨在为设计人员提供执行这种区分并支持蠕变计算的解释的工具。提出的方法是为了提高预测涡轮叶片和叶片的蠕变损伤的准确性而开发的,但是它们也可以用于其他目的(例如,预测磁滞循环位移,支持基于塑性场的塑性应变的估计)。弹性有限元计算),如本文所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号