首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >Heat Transfer and Pressure Drop Measurements in a High Solidity Pin Fin Array with Variable Hole Size Incremental Impingement
【24h】

Heat Transfer and Pressure Drop Measurements in a High Solidity Pin Fin Array with Variable Hole Size Incremental Impingement

机译:可变孔尺寸增量撞击的高固钉翅片阵列中的传热和压降测量

获取原文

摘要

Leading edge heat loads on turbine vanes diminish relative to fully turbulent heat loads with increasing Reynolds number. Leading edge regions of turbine nozzles are often cooled using showerhead arrays while the near pressure surface is often protected with rows of shaped holes. However, in environments with impurities in the fuel or air cooling holes are susceptible to clogging and constitute sites where deposition can begin. Showerhead film cooling can be disruptive to downstream boundary layer development and film cooling. Also, high turbulence levels which normally exist in these regions quickly mix away film cooling protection. Consequently, internal cooling has many advantages over showerhead cooling and pressure surface film protection. Internal cooling produces higher levels of internal effectiveness and spent cooling air can be subsequently directed to near optimum discharge geometries for film protection. Conventional cooling methods have disadvantages when trying to cool leading edge regions and near pressure surfaces. Cooling air in pin fin arrays quickly heats up developing a lower cooling potential. Impingement arrays have issues due to increasing crossflows which deflect impingement jets and insulate the surfaces needing cooling. Incremental impingement overcomes these disadvantages by incrementally adding cooling air where needed and overcoming crossflows by hiding impingement jets behind high solidity pedestals. This paper presents heat transfer and pressure drop results for an incremental impingement array with variable hole size. The experimental measurements were acquired using a bench scale test rig. The array Reynolds numbers tested ranged from 5000 to 60,000 based on the average velocity of the accumulated flow through the minimum array flow area. The array consisted of an initial impingement row between a row of elongated pedestals followed by 7 additional high solidity round pedestal rows in a staggered arrangement. Impingement holes of variable sizes were placed behind even rows. Generally, the array consisted of rows of round pins spaced at 1.625 diameters in the spanwise direction, 1.074 diameters in the streamwise direction with a channel height to diameter ratio of 0.5. Impingement hole to pin diameter ratios used included d/D of 0.295, 0.351, and 0.417. Hole configurations were limited to arrays where the hole area upstream from the last row of holes was no more than 109% of the minimum array flow area. Heat transfer measurements were acquired at a constant temperature within the array and are reported on a row averaged basis in terms of the local internal effectiveness and the cooling parameter.
机译:随着雷诺数的增加,涡轮叶片上的前缘热负荷相对于完全湍流的热负荷会减小。涡轮喷嘴的前缘区域通常使用喷淋头阵列进行冷却,而近压力表面通常通过成排的成形孔进行保护。但是,在燃料或空气中杂质较多的环境中,冷却孔容易堵塞,并构成了可开始沉积的位置。喷淋头的薄膜冷却可能会破坏下游边界层的显影和薄膜冷却。而且,通常在这些区域中存在的高湍流水平很快将薄膜冷却保护混为一谈。因此,与喷头冷却和压力表面膜保护相比,内部冷却具有许多优势。内部冷却产生更高水平的内部有效性,并且随后可以将用过的冷却空气导向接近最佳的排放几何形状,以进行薄膜保护。当试图冷却前缘区域和压力表面附近时,常规的冷却方法具有缺点。针鳍阵列中的冷却空气会迅速升温,从而产生较低的冷却潜能。由于增加的横流使冲击射流偏斜并使需要冷却的表面绝缘,因此冲击阵列会出现问题。增量撞击通过在需要的地方逐步添加冷却空气并通过将撞击射流隐藏在高密度基座后面来克服横流,从而克服了这些缺点。本文介绍了可变孔尺寸的增量式冲击阵列的传热和压降结果。使用台式试验台获得实验测量值。根据通过最小阵列流通面积的累积流量的平均速度,测试的阵列雷诺数范围为5000至60,000。该阵列由一排细长基座之间的初始冲击行,然后是交错排列的7个其他高强度圆形基座基座行组成。可变大小的冲击孔放置在偶数行的后面。通常,该阵列由成排的圆销组成,这些圆销在翼展方向上以1.625的直径隔开,在流向方向上以1.074的直径隔开,通道的高度与直径之比为0.5。所使用的冲击孔与销的直径比包括d / D为0.295、0.351和0.417。孔配置仅限于阵列,其中最后一排孔上游的孔面积不超过最小阵列流通面积的109%。传热测量是在阵列中的恒定温度下获得的,并根据局部内部有效性和冷却参数以行平均的形式进行报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号