首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >Rib Cross Section Optimization of a Ribbed Turbine Internal Cooling Channel with Experimental Validation
【24h】

Rib Cross Section Optimization of a Ribbed Turbine Internal Cooling Channel with Experimental Validation

机译:带肋涡轮内部冷却通道的肋截面优化与实验验证

获取原文

摘要

Due to the recent developments of the engine industry, turbine internal channel cooling is a need. In fact, in order to supply more power efficiently, the fluid temperature at turbine inlet approaches to 2000 K when common turbine materials cannot resist temperature values higher than 1500 K. The crucial point is that the engine cycle efficiency and thrust highly depend on the turbine inlet temperature and, so, such a thermal problem needs to be overcome by cooling. Coolant air of the internal channel cooling systems is mostly taken from valuable compressor bleed that makes it to circulate through the serpentine internal passages. The coolant air flow is commonly fully turbulent, incompressible and with 3D characteristics because of the complex shape of the cooling passage. Considering this latter aspect, the pressure drop also plays a relevant role because, in order to minimize the cooling mass flow, it needs to be reduced. In this study, rib cross-section shape optimization of a ribbed internal cooling channel is conducted to assess the trade-off between two conflicting objectives: heat transfer performance and pressure drop. For this purpose, a novel mesh morphing based optimization tool is developed which uses radial basis functions (RBF) for morphing and meta-model assisted evolutionary algorithms (EA) for optimization. Experimental tests characterized by Reynolds number of 20000 are performed to validate such an optimization tool. The local Nusselt number is calculated using hydraulic diameter of channel and air thermal conductivity corresponding to bulk temperature. The cooling effectiveness of the channel is quantified using the ratio of the Nusselt number of the ribbed case to the Nusselt number of the smooth case. With the gained optimized geometry, the heat transfer shows better results than initial case with a pressure loss improvement of 8%.
机译:由于发动机工业的最新发展,需要涡轮内部通道冷却。实际上,为了有效地提供更多功率,当普通涡轮材料无法承受高于1500 K的温度值时,涡轮入口处的流体温度接近2000K。关键点在于,发动机循环效率和推力很大程度上取决于涡轮入口温度等需要通过冷却来解决。内部通道冷却系统的冷却剂空气大部分来自有价值的压缩机放气,使它在蜿蜒的内部通道中循环。由于冷却通道的形状复杂,冷却剂气流通常完全湍流,不可压缩并且具有3D特性。考虑到后一个方面,压降也起着重要的作用,因为为了使冷却质量流最小化,需要减小它。在这项研究中,对肋状内部冷却通道的肋状截面形状进行了优化,以评估两个相互矛盾的目标之间的权衡:传热性能和压降。为此,开发了一种新颖的基于网格变形的优化工具,该工具使用径向基函数(RBF)进行变形,并使用元模型辅助进化算法(EA)进行优化。进行了以20000雷诺数为特征的实验测试,以验证这种优化工具。使用通道的水力直径和对应于体温的空气热导率来计算局部Nusselt数。通道的冷却效率使用带肋外壳的Nusselt数与光滑外壳的Nusselt数之比来量化。通过获得的最佳几何形状,传热效果比初始情况更好,压力损失提高了8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号