首页> 外文会议>Conference on Physics of Medical Imaging >Task-Driven Orbit Design and Implementation on a Robotic C-Arm System for Cone-Beam CT
【24h】

Task-Driven Orbit Design and Implementation on a Robotic C-Arm System for Cone-Beam CT

机译:锥束CT机器人C臂系统的任务驱动轨道设计与实现

获取原文

摘要

Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the f_z-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (f_y,f_z) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the f_z-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).
机译:目的:这项工作将任务驱动的优化应用于非圆形轨道的设计,以最大化特定成像任务的成像性能。演示了任务驱动成像在临床机器人C臂系统上的首次实现,并描述和评估了用于轨道计算的框架。方法:我们实施了任务驱动的成像框架,以优化可最大化可探测性指标d'的轨道参数。该框架利用指定的傅立叶域任务函数和系统空间分辨率和噪声的分析模型。进行了两个实验以测试框架。首先,考虑了一个简单的任务,该任务由完全位于f_z轴上的频率组成(例如,辨别平行于中心轴向平面的结构),并且将“圆+弧”轨道纳入了框架,作为改进的手段对这些频率进行采样,从而提高基于任务的可检测性。该轨道是在自动C形臂(Artis Zeego,西门子医疗)上实现的。第二项任务是考虑在头部模型中模拟耳蜗植入物的可视化,其空间频率响应强调耳蜗(f_y,f_z)平面中的高频成分。使用任务驱动的框架计算了最佳轨道,并将生成的图像与圆形轨道的图像进行了比较。结果:对于f_z轴任务,圆+弧形轨道显示d'增加了1.20倍,在远离中心平面的边缘的3D边缘扩展测量中,改进了0.71 mm,而减小了相较于圆形轨道,条纹痕迹更明显。对于人工耳蜗植入任务,得到的轨道偏向于在360°轨道上具有高倾斜角的互补视图,并且d'增加了1.83倍。结论:这项工作表明,成像任务的前瞻性定义可用于优化源探测器的轨道并改善成像性能。该方法用于在临床机器人C臂系统上执行非圆形,任务驱动的轨道。该框架足够通用以既包括获取参数(例如,轨道,kV和mA选择)又包括重构参数(例如,空间变化的正则器)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号