首页> 外文会议>IEEE Aerospace Conference >A trilateration scheme for relative positioning
【24h】

A trilateration scheme for relative positioning

机译:相对定位的三边测量方案

获取原文

摘要

We introduce a trilateration scheme that evaluates the 3-dimensional (3-D) relative position between a reference spacecraft and a target spacecraft using raw-range measurements from a distance baseline of known locations, which we call “anchors”. The anchors can be antennas of a ground-based network (e.g., Deep Space Network (DSN) or Near Earth Network (NEN) stations), or satellites of a space-based network (e.g., global positioning system (GPS) or tracking and data relay satellite (TDRS)). We define raw-range as the range that includes all the systematic errors that occur during range measurements. A unique feature of this approach is that accurate relative position is derived from a “differencing function” of raw-range measurements of the reference spacecraft and target spacecraft, thereby eliminating most of the systematic errors, such as media effects, ephemeris errors, instrument delays, clock bias, etc. There can be an arbitrary number of target spacecraft, and relative positioning of target spacecraft with respect to the reference spacecraft can be done simultaneously. In this paper, we first assume an idealized system in which clocks on the reference and target spacecraft are synchronized, with clocks of the anchors synchronized as well. We develop a novel iterative algorithm that computes the relative position of the target spacecraft with respect to the reference spacecraft. We illustrate the relative positioning method using the scenario of a network of three ground stations (i.e., the anchors) at Goldstone, California, USA, Madrid, Spain, and Marlargue, Argentina tracking two spacecraft at geosynchronous orbit distance. We demonstrate that the algorithm converges to submeter accuracy in estimating the relative position, in the presence of random errors and systematic errors in raw-range measurements, and in the presence of angular errors in estimating the pointing vectors between the anchors and the reference spacecraft. Next, we relax the requirement of perfect time synchronization between spacecraft, and show that by using an additional anchor, one can estimate and remove the clock biases between the reference and target spacecraft. We add a ground station at Kourou to the above example of three ground stations of Goldstone, Madrid, and Marlargue, and demonstrate that the updated algorithm also converges to meter-level accuracy (submeter in some cases) in the presence of clock biases in addition to the random errors, systematic errors, and angular errors as shown in the above case.
机译:我们引入了三边测量方案,该方案使用已知位置的距离基线(称为“锚定点”)的原始距离测量值来评估参考航天器和目标航天器之间的3维(3-D)相对位置。锚点可以是基于地面的网络(例如深空网络(DSN)或近地网络(NEN)站)的天线,也可以是基于空间的网络的卫星(例如全球定位系统(GPS)或跟踪和数据中继卫星(TDRS))。我们将原始范围定义为包括范围测量期间发生的所有系统误差的范围。这种方法的独特之处在于,准确的相对位置是从参考航天器和目标航天器的原始距离测量值的“差分函数”得出的,从而消除了大多数系统误差,例如媒体效应,星历误差,仪器延迟,时钟偏差等。可以有任意数量的目标航天器,并且目标航天器相对于参考航天器的相对定位可以同时完成。在本文中,我们首先假设一个理想化的系统,其中参考航天器和目标航天器上的时钟同步,同时锚点的时钟也同步。我们开发了一种新颖的迭代算法,可计算目标航天器相对于参考航天器的相对位置。我们使用在美国加利福尼亚州戈德斯通,西班牙马德里和阿根廷马拉拉格的三个地面站(即锚点)的网络的场景来说明相对定位方法,该网络在地球同步轨道距离跟踪两个航天器。我们证明,在估计相对位置时,在原始范围测量中存在随机误差和系统误差,并且在估计锚和参考航天器之间的指向矢量时,在存在角度误差的情况下,该算法收敛到亚米级精度。接下来,我们放宽了航天器之间实现完美时间同步的要求,并表明通过使用额外的锚点,可以估算并消除参考航天器与目标航天器之间的时钟偏差。我们在上面的Goldstone,Madrid和Marlargue的三个地面站的示例中,在Kourou上增加了一个地面站,并演示了在存在时钟偏差的情况下,更新后的算法也收敛到米级精度(在某些情况下为亚米级)如上述情况所示的随机误差,系统误差和角度误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号