首页> 外文会议>IEEE International Solid- State Circuits Conference >12.1 A 7nm 256Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for low-VMIN applications
【24h】

12.1 A 7nm 256Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for low-VMIN applications

机译:采用高k金属栅FinFET技术的12.1 A 7nm 256Mb SRAM,具有用于低VMIN应用的写辅助电路

获取原文
获取外文期刊封面目录资料

摘要

The growing demand for battery powered mobile devices is a major driver for reducing power and continued area scaling in SOC chips. Continued scaling of the transistor and metal interconnection geometry is accompanied by increasing random Vt variation and increased wire routing resistance and capacitance variation in advanced technologies. Such variation degrades SRAM performance and its minimum operating voltage, which then seriously impact the battery life of mobile devices. FinFET technology provides a superior short-channel effect and less random dopant fluctuation. However, the quantized channel width and length force constrains on transistor sizing of high density SRAM bitcells. Figure 12.1.1(a) shows the layout of a high density 6T SRAM bit cell with a 0.027µm2 area in a leading edge 7nm FinFET technology. In order to achieve minimum area, all transistors (PU, PG, PD) in this bitcell have to be sized as single fin. Figure 12.1.1(b) shows a contention between the pull-up (PU) and the pass-gate (PG) transistors during a write operation. A stronger PU transistor results in better read stability, but the write margin is significantly degraded and results in elevation of minimum operation voltage for write operation. The negative bit-line (NBL) technique was proposed to improve write VMIN in previous work [1-6]. In addition to transistor scaling, the geometric scaling of metal and via routing increases the back-end wire RC load, which also significantly degrades SRAM operation speed. In this work, we use a flying BL (FBL) and double WL (DWL) design to mitigate the RC wire load impact in order to improve SRAM array access performance.
机译:对电池供电的移动设备的需求不断增长,这是降低功耗并持续缩小SOC芯片面积的主要驱动力。在先进技术中,晶体管和金属互连几何形状的持续缩放伴随着随机Vt变化的增加以及导线电阻和电容变化的增加。这种变化会降低SRAM性能及其最小工作电压,从而严重影响移动设备的电池寿命。 FinFET技术提供了出色的短沟道效应和较少的随机掺杂物波动。然而,量化的沟道宽度和长度力限制了高密度SRAM位单元的晶体管尺寸。图12.1.1(a)显示了采用领先的7nm FinFET技术的面积为0.027µm2的高密度6T SRAM位单元的布局。为了达到最小面积,该位单元中的所有晶体管(PU,PG​​,PD)必须调整为单个鳍的尺寸。图12.1.1(b)显示了写操作期间上拉(PU)和传输门(PG)晶体管之间的争用。较强的PU晶体管可带来更好的读取稳定性,但是写入裕度会显着降低,并且会导致写入操作的最小工作电压升高。在先前的工作中,提出了负位线(NBL)技术来改善写入VMIN [1-6]。除了晶体管缩放之外,金属和过孔布线的几何缩放还会增加后端导线RC负载,这也会大大降低SRAM的运行速度。在这项工作中,我们使用浮动BL(FBL)和双WL(DWL)设计来减轻RC线负载的影响,以提高SRAM阵列访问性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号