首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >EFFECT OF ROTATION ON A GAS TURBINE BLADE INTERNAL COOLING SYSTEM: NUMERICAL INVESTIGATION
【24h】

EFFECT OF ROTATION ON A GAS TURBINE BLADE INTERNAL COOLING SYSTEM: NUMERICAL INVESTIGATION

机译:旋转对燃气轮机叶片内部冷却系统的影响:数值研究

获取原文

摘要

Increasing turbine inlet temperature is one of the main strategies used to accomplish the demands of increased performance of modern gas turbines. As a consequence, optimization of the cooling system is of paramount importance in gas turbine development. Leading edge represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point and the unfavourable geometry for cooling. This paper reports the results of a numerical investigation aimed at assessing the rotation effects on the heat transfer distribution in a realistic leading edge internal cooling system of a high pressure gas turbine blade. The numerical investigation was carried out in order to support and to allow an in-depth understanding of the results obtained in a parallel experimental campaign. The model is composed of a trapezoidal feeding channel which provides air to the cold bridge system by means of three large racetrack-shaped holes, generating coolant impingement on the internal concave leading edge surface, whereas four big fins assure the jets confinement. Air is then extracted through 4 rows of 6 holes reproducing the external cooling system composed of shower-head and film cooling holes. Experiments were performed in static and rotating conditions replicating the typical range of jet Reynolds number (Re_ j) from 10000 to 40000 and Rotation number (Ro_j) up to 0.05, for three crossflow cases representative of the working condition that can be found at blade tip, midspan and hub, respectively. Experimental results in terms of flow field measurements on several internal planes and heat transfer coefficient on the LE internal surface have been performed on two analogous experimental campaigns at University of Udine and University of Florence respectively. Hybrid RANS-LES models were used for the simulations, such as Scale Adaptive Simulation (SAS) and Detached Eddy Simulation (DES), given their ability to resolve the complex flow field associated with jet impingement. Numerical flow field results are reported in terms of both jet velocity profiles and 2D vector plots on symmetry and transversal internal planes, while the heat transfer coefficient distributions are presented as detailed 2D maps together with radial and tangential averaged Nusselt number profiles. A fairly good agreement with experimental measurements is observed, which represent a validation of the adopted computational model. As a consequence, the computed aerodynamic and thermal fields also allow an in-depth interpretation of the experimental results.
机译:涡轮进口温度的升高是满足现代燃气轮机性能提高要求的主要策略之一。因此,冷却系统的优化在燃气轮机的开发中至关重要。考虑到存在热气停滞点和不利于冷却的几何形状,前缘代表了冷却喷嘴和叶片的关键部分。本文报告了一项数值研究的结果,旨在评估高压燃气轮机叶片的实际前沿内部冷却系统中旋转对传热分布的影响。进行了数值研究,以支持并允许对并行实验活动中获得的结果进行深入了解。该模型由一个梯形进料通道组成,该通道通过三个大的跑道形孔向冷桥系统提供空气,从而在内部凹入的前缘表面上产生冷却剂撞击,而四个大翅片则确保了射流的约束。然后,通过4排6个孔抽出空气,重现由喷淋头和胶片冷却孔组成的外部冷却系统。在静态和旋转条件下进行了实验,复制了三种典型的工作状态横流情况,这些典型雷诺数(Re_ j)从10000到40000,旋转数(Ro_j)的典型范围从10000到40000,可在叶片尖端找到,中跨和集线器。在几个内部平面上的流场测量和LE内表面上的传热系数方面的实验结果分别在乌迪内大学和佛罗伦萨大学进行了两次类似的实验活动。混合RANS-LES模型用于仿真,例如比例自适应仿真(SAS)和分离涡流仿真(DES),因为它们具有解决与射流撞击相关的复杂流场的能力。根据射流速度分布图和对称内表面和横向内表面上的二维矢量图,报告了数值流场结果,而传热系数分布则以详细的二维图以及径向和切向平均努塞尔数分布图的形式呈现。观察到与实验测量结果相当吻合,这表示对所采用的计算模型的验证。结果,计算出的空气动力场和热场也允许对实验结果进行深入的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号