首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >LES OF A ROUND IMPINGING JET: INVESTIGATION OF THE LINK BETWEEN NUSSELT SECONDARY PEAK AND NEAR-WALL VORTICAL STRUCTURES
【24h】

LES OF A ROUND IMPINGING JET: INVESTIGATION OF THE LINK BETWEEN NUSSELT SECONDARY PEAK AND NEAR-WALL VORTICAL STRUCTURES

机译:圆冲射流的烦恼:NUSSELT次峰与近壁涡状结构之间的联系研究

获取原文
获取外文期刊封面目录资料

摘要

In an attempt to improve our understanding of the fundamental flow problem that is an impinging jet, a wall-resolved Large Eddy Simulation (LES) is produced to investigate large-scale unsteady flow features, mixing processes near the wall and heat transfer. The simulation focuses on a single unconfined round jet normally impinging on a flat plate at a Reynolds number (based on the pipe diameter and bulk velocity) of Re = 23 000 and for a nozzle to plate distance of H = 2D. This configuration is known to lead to a double peak in the Nusselt distribution. Evaluation of the high order statistics, such as Skewness and Kurtosis of the temporal evolution of axial velocity and wall heat flux, provides first-ever insights into the effect of the vortical structures on the mean wall heat transfer. Heat transfer statistics such as probability density functions (PDF) confirm the ability of LES to reproduce the strong intermittent thermal events responsible for the increase of the mean wall heat transfer radial distribution. Axial velocity and temperature temporal distributions are analysed simultaneously to gain further insight into the mixing process near the wall. In particular, the probabilities of the different cold/hot fluid ejection/injection events prove that the strong intermittent thermal events are linked to a change in the mixing behavior induced by the passage of the large-scale vortical structures. These structures are found to preferentially produce a cold fluid flux towards the wall leading to the local heat transfer enhancement usually identified by the secondary peak.
机译:为了提高我们对撞击射流的基本流动问题的理解,制作了壁分辨大涡模拟(LES),以研究大规模的非稳态流动特征,壁附近的混合过程和传热。该模拟的重点是通常以Re = 23 000的雷诺数(基于管径和整体速度)以H = 2D的雷诺数撞击到平板上的单个无限制的圆形射流。已知这种配置会导致Nusselt分布出现双峰。对高阶统计量的评估,例如轴向速度和壁热通量的时间演变的偏度和峰度,提供了关于涡旋结构对平均壁热传递的影响的首次见解。诸如概率密度函数(PDF)之类的传热统计数据证实了LES重现导致平均壁传热径向分布增加的强间歇性热事件的能力。同时分析轴向速度和温度的时间分布,以进一步了解壁附近的混合过程。特别地,不同的冷/热流体喷射/喷射事件的概率证明,强间歇热事件与大型旋涡结构的通过引起的混合行为的变化有关。发现这些结构优先产生朝向壁的冷流体通量,从而导致通常由次要峰确定的局部传热增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号