首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >Experimental Investigation of Heat Transfer Augmentation by Different Jet Impingement Hole Shapes under Maximum Crossflow
【24h】

Experimental Investigation of Heat Transfer Augmentation by Different Jet Impingement Hole Shapes under Maximum Crossflow

机译:最大横流下不同射流撞击孔形状增强传热的实验研究

获取原文

摘要

To achieve higher overall efficiency in gas turbine engines, hot gas path components are subjected to high heat transfer loads due to higher turbine inlet temperatures. Jet impingement has been extensively used especially as an internal cooling technique in the leading edge and mid-chord region of first stage vanes, which are subjected to highest heat loads. With the advent of additive manufacturing methods such as Direct Metal Laser Sintering (DMLS), designers are not limited to designing round or race track holes for impingement. The present study is focused on exploring new jet hole shapes, in an arrangement, typical of mid-chord region in a double wall cooling configuration. Transient liquid crystal experiments are carried out to study heat transfer augmentation by jet impingement on smooth target where the spent air is allowed to exit in one direction, thus imposing maximum crossflow condition. The averaged Reynolds number (based on jet hydraulic diameter) is varied from 2500 to 10000. The jet plate has a square array of jets with 7 jets in one row (total number of jets = 49), featuring hole shapes - Racetrack and V, where the baseline case is the round hole. The non-dimensional streamwise (x/d_j) and spanwise (y/d_j) spacing is 6 and the normalized jet-to- target-plate spacing (z/d_j) is 4 and the nozzle aspect ratio (L/d_j) is also 4. The criteria for the hole shape design was to keep the effective area of different hole shapes to be the same, which resulted in slightly different hydraulic diameters. The jet-to-target plate spacing (z) has been adjusted accordingly so as to maintain a uniform z/d_j of 4, across all three configurations studied. Heat transfer coefficients are measured using a transient Liquid Crystal technique employing a one-dimensional semi-infinite model. Flow experiments are carried out to measure static pressures in the plenum chamber, to calculate the discharge coefficient, for a range of plenum absolute pressure-to-ambiem pressure ratios. Detailed normalized Nusselt number contours have been presented, to identify the regions of high heat transfer augmentation locally, so as to help the designers in the organization of jet hole shapes and their patterns in an airfoil depending upon the active heat loads.
机译:为了在燃气涡轮发动机中实现更高的整体效率,由于更高的涡轮入口温度,热气路径部件要承受高的热传递载荷。射流冲击已被广泛用作第一级叶片的前缘和中弦区域中的内部冷却技术,这些叶片承受着最高的热负荷。随着诸如直接金属激光烧结(DMLS)之类的增材制造方法的出现,设计人员不仅限于设计用于撞击的圆形孔或跑道孔。本研究的重点是在双层壁冷却配置中,探索典型的中弦区域布置中的新喷射孔形状。进行了瞬态液晶实验,以研究在光滑目标上通过射流撞击进行的传热增强,在该目标上,废空气可以沿一个方向排出,从而施加了最大的错流条件。平均雷诺数(基于射流液压直径)从2500到10000不等。射流板上有一个正方形的射流阵列,其中一排有7个射流(射流总数= 49),具有孔形-跑道和V,基线情况是圆孔。无量纲流向(x / d_j)和跨度向(y / d_j)间距为6,归一化射流与目标板的间距(z / d_j)为4,喷嘴长宽比(L / d_j)也为4.孔形状设计的标准是保持不同孔形状的有效面积相同,从而导致水力直径略有不同。相应地调整了射流至目标板的间距(z),以便在所研究的所有三种配置下均保持4的均匀z / d_j。使用一维半无限模型的瞬态液晶技术测量传热系数。对于一定范围的气室绝对压力与环境压力比,进行了流量实验以测量气室中的静压,以计算排放系数。提出了详细的归一化Nusselt数等值线,以识别局部高传热的区域,从而帮助设计人员根据活动的热负荷来设计翼型中的喷孔形状及其样式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号