首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >A 3D COUPLED APPROACH FOR THE THERMAL DESIGN OF AERO-ENGINE COMBUSTOR LINERS
【24h】

A 3D COUPLED APPROACH FOR THE THERMAL DESIGN OF AERO-ENGINE COMBUSTOR LINERS

机译:航空发动机燃烧室衬套热设计的3D耦合方法

获取原文
获取外文期刊封面目录资料

摘要

The adoption of lean burn combustion to limit NOx emissions of modern aero-engines imposes a drastic reduction of air dedicated to cooling combustor dome and liners. In the latest years many aero-engine manufacturers are hence implementing effusion cooling, which provides uniform protection on the hot side of the liner and significant heat removal within the perforation. With an industrial perspective, the development of such components is usually carried out with different strategies depending on the level of accuracy required in the design phase involved (i. e preliminary or detailed). In the collaboration between GE Avio and University of Florence, the preliminary design of these devices is carried out with Therm(1)D, an in-house thermal flow-network solver based on the (1)D correlative approach proposed by Lefebvre. This strategy, however, is not capable of taking into account the complexity of the three-dimensional nature of the flow field and the interaction between swirling flow and liner cooling, making necessary the use of Computational Fluid Dynamics (CFD) in the most advanced phases of the design process. Nevertheless, notwithstanding the increasing popularity of CFD, even a RANS simulation of a single sector of an annular combustor still presents a challenge, when the cooling system is taken into account. This issue becomes more critical in case of modern effusion cooled combustors, which may contain thousands of holes for each sector. With the aim of of increasing the fidelity of the prediction, keeping in mind the industrial needs for limited computational efforts, a new tool has been developed: Therm3D. This approach involves the CFD simulation of the combustor flametube by modelling effusion cooling with point mass sources, whereas the fluid dynamic prediction of the remaining part is fulfilled exploiting the equivalent flow-network solver implemented in Therm(1)D, which provides the estimation of flow split and cold side heat loads. The solution is coupled with two separate calculations aimed at solving flame radiation and heat conduction within the metal. This paper describes the main findings of the application of Therm3D to a lean annular combustor. The results obtained have been compared to experimental data and the above mentioned numerical tools employed during the design process.
机译:通过采用稀薄燃烧来限制现代航空发动机的NOx排放,可大大减少专用于冷却燃烧室穹顶和衬套的空气。因此,在最近几年中,许多航空发动机制造商正在实施喷射冷却,该冷却可在衬套的热侧提供均匀的保护,并在穿孔内显着散热。从工业角度来看,通常取决于所涉及的设计阶段(即,初步的或详细的)所要求的精度水平,以不同的策略来进行这种部件的开发。在GE Avio与佛罗伦萨大学的合作中,这些设备的初步设计是通过Therm(1)D进行的,Therm(1)D是一种内部热流网络求解器,它基于Lefebvre提出的(1)D相关方法。但是,此策略无法考虑流场的三维特性的复杂性以及旋流与衬管冷却之间的相互作用,因此必须在最高级的阶段中使用计算流体动力学(CFD)设计过程。然而,尽管CFD越来越流行,但当考虑冷却系统时,即使是环形燃烧室单个扇形的RANS模拟也仍然是一个挑战。对于现代的喷射冷却式燃烧器,这个问题变得尤为重要,每个燃烧器可能包含成千上万个孔。为了提高预测的逼真度,同时考虑到有限的计算工作的工业需求,开发了一种新工具:Therm3D。这种方法涉及通过使用点质量源对排放冷却进行建模来对燃烧器火焰管进行CFD仿真,而其余部分的流体动力学预测则可通过Therm(1)D中实现的等效流网络求解器来实现,该方法可估算分流和冷侧热负荷。该解决方案与两个单独的计算相结合,旨在解决金属中的火焰辐射和热传导。本文介绍了将Therm3D应用于稀薄环形燃烧室的主要发现。将获得的结果与实验数据以及在设计过程中使用的上述数值工具进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号