首页> 外文会议>LWR fuel with enhanced safety and performance meeting >Uncertainty Quantification and Sensitivity Analysis Applications to Fuel Performance Modeling
【24h】

Uncertainty Quantification and Sensitivity Analysis Applications to Fuel Performance Modeling

机译:不确定度量化和灵敏度分析在燃料性能建模中的应用

获取原文

摘要

Best-estimate fuel performance codes such as BISON currently under development at the Idaho National Laboratory, utilize empirical and mechanistic lower-length-scale informed correlations to predict fuel behavior under normal operating and accident reactor conditions Traditionally, best-estimate results are presented using the correlations with no quantification of the uncertainty in the output metrics of interest. However, there are associated uncertainties in the input parameters and correlations used to determine the behavior of the fuel and cladding under irradiation Therefore, it is important to perform uncertainty quantification and include confidence bounds on the output metrics that take into account the uncertainties in- the inputs. In addition, sensitivity analyses can be performed to determine which input parameters have the greatest influence on the outputs. In this paper we couple the BISON fuel performance code to the DAKOTA uncertainty analysis software to analyze a representative fuel performance problem The case studied in this paper is based upon rod 1 from the IFA-432 integral experiment performed at the Halden Reactor in Norway The rodlet is representative of a BWR fuel rod The input parameters uncertainties are broken into three separate categories including boundary condition uncertainties (e.g., power, coolant flow rate), manufacturing uncertainties (e.g., pellet diameter, cladding thickness), and model uncertainties (e.g., fuel thermal conductivity, fuel swelling) Utilizing DAKOTA, a variety of statistical analysis techniques are applied to quantify the uncertainty and sensitivity of the output metrics of interest. Specifically, we demonstrate the use of sampling methods, polynomial chaos expansions, surrogate models, and variance-based decomposition. The output metrics investigated in this study are the fuel centerhne temperature, cladding surface temperature, fission gas released, and fuel rod diameter. The results highlight the importance of quantifying the uncertainty and sensitivity in fuel performance modeling predictions and the need for additional research into improving the material models that are currently available
机译:最佳估计的燃料性能代码(例如爱达荷州国家实验室目前正在开发的BISON)利用经验和机制较小长度尺度的相关系数来预测正常运行和事故反应堆条件下的燃料行为。相关性,而没有量化目标输出指标中的不确定性。但是,输入参数中存在相关的不确定性,以及用于确定辐照下的燃料和包壳行为的相关性。因此,进行不确定性量化并在考虑到不确定性的情况下在输出指标上包括置信范围非常重要。输入。此外,可以执行灵敏度分析以确定哪些输入参数对输出影响最大。在本文中,我们将BISON燃料性能代码与DAKOTA不确定性分析软件耦合,以分析典型的燃料性能问题。本文研究的案例基于在挪威哈尔登反应堆进行的IFA-432积分实验中的棒1。是BWR燃料棒的代表。输入参数不确定性分为三类,包括边界条件不确定性(例如,功率,冷却剂流速),制造不确定性(例如,颗粒直径,包层厚度)和模型不确定性(例如,燃料)导热性,燃料溶胀性)利用DAKOTA,各种统计分析技术可用于量化目标输出指标的不确定性和敏感性。具体来说,我们演示了采样方法,多项式混沌展开,替代模型和基于方差的分解的使用。在这项研究中调查的输出指标是燃料中心温度,包层表面温度,释放的裂变气体和燃料棒直径。结果强调了量化燃油性能模型预测中的不确定性和敏感性的重要性,以及需要进行进一步研究以改进当前可用的材料模型的重要性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号